K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

a) Xét ΔABM và ΔCKM có:

MA=MC(gt)

MB=MK(gt)

góc BMA= góc CMK( 2 góc đối đỉnh )

=>ΔABM=ΔCKM( c.g.c)

=> góc MAB= góc MCK=90o

=>KC vuông góc với AC

b) Xét ΔBMC  và ΔKMA có:

MA=MC(gt)

góc BMC= góc AMK( 2 góc đối đỉnh )

=>ΔBMC=ΔKMA(c.g.c)

=> góc MBC= góc MKA

=>BC//AK

1 tháng 12 2019

a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )

⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)

Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)

Từ (1) và (2) ⇒A1ˆ=C1ˆ

Xét ΔAHB,ΔCKA có:

A1ˆ=C1ˆ(cmt)

AB = AC ( gt )

H^=K^=90o

⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )

⇒AH=CK( cạnh t/ứng ) ( đpcm )

b) Vì ΔAHB=ΔCKA

⇒BH=AK,AH=CK( cạnh t/ứng )

Ta có: HK=AK+AH=BH+CK(đpcm)

Vậy...

Chúc bạn học tốt

11 tháng 1 2017

Δ BHA : góc BHA = 90* (gt)
=> góc HBA + góc HAB = 90* (định lý)

Δ AKC : góc AKC = 90* (gt)
=> góc CAK + góc KCA = 90* (định lý)

Ta có góc : HAB + BAC + CAK = 180*
=> góc : HAB + 90* + CAK = 180*
=> góc : HAB + CAK = 90

Ta có góc : CAK + HAB = 90* (cmt)
mà góc : CAK + KCA = 90* (cmt)
=> góc : CAK + HAB = CAK + KCA (t/c b.cầu)
=> góc : HAB = KCA (chuyển vế đổi dấu)

Xét Δ HBA và Δ KAC có :
BA = CA (gt)
góc BAH = góc KCA (cmt)
góc H = góc K = 90*
=> Δ HBA = Δ KAC ( cạnh huyền - góc nhọn )
=> AH = CK (c.t.ứng) (dpcm A)
=> BH = AK (c.t.ứng)

có HK = AH + AK
mà AH = CK (cmt) , BH = AK (cmt)
=> HK = BH + CK (t/c b.cầu) (dpcm B)
 

11 tháng 1 2017

cảm ơn bạn nhiều nha

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.  a) Chứng minh: KE // BC  b) Chứng minh: tam giác DEF đều2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.  a) Chứng minh: BH = AK  b) Chứng minh: tam giác MHK vuông cân.3) Cho tam...
Đọc tiếp

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.

  a) Chứng minh: KE // BC

  b) Chứng minh: tam giác DEF đều

2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.

  a) Chứng minh: BH = AK

  b) Chứng minh: tam giác MHK vuông cân.

3) Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Trên tia đối tia MB lấy N sao cho MB = MN. Đường thẳng qua B // AC cắt NC ở P. Vẽ phân giác BD của góc ABM. Qua D kẻ đường thẳng BM cắt BM ở H và cắt CP ở K.

  a) Chứng minh: CN = CA

  b) Chứng minh tam giác BPC vuông cân

c) Chứng minh: KH = KP

  d) Tính góc DBK

  e) Biết BC = 8cm. Tính chu vi tam giác DKC

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm a) Chứng tỏ tam giác ABC vuông b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC c) BH cắt AG tại G là trọng tâm tam giác ABC Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE a) Chứng minh CD = BE và CD vuông góc với BE b) Kẻ đường thẳng đi qua A vuông với BC...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm 

a) Chứng tỏ tam giác ABC vuông 

b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC 

c) BH cắt AG tại G là trọng tâm tam giác ABC 

Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE 

a) Chứng minh CD = BE và CD vuông góc với BE 

b) Kẻ đường thẳng đi qua A vuông với BC tại H . Chứng minh AH đi qua đường thẳng DE . Lấy điểm K nằm trong tam giác ABD sao cho  góc ABH = 30 độ , AB = BK . Chứng minh chúng bằng nhau

Bài 3 : Cho tam giác ABC vuông ở C có góc A = 60 độ . Tia p/g của góc BAC cắt BC ở E , kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với AE ( D thuộc AE)

b) Chứng minh tam giác ACE = tam giác AKE và AE vuôngg góc với CK 

c) chứng minh EB > AC , 3 đường thẳng AC , BD ,, KE cùng đi qua 1 điểm 

 

2
28 tháng 6 2020

a) xét \(\Delta ABC\)

\(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=36+64=100\)

VÌ \(100=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

VẬY \(\Delta ABC\) VUÔNG TẠI A

28 tháng 6 2020

trong tam giác ABC ta có :

     AB2=62=36

     AC2=82=64

    BC2=102=100

ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )

=> tam giác ABC vuông tại A 

CHÚC BẠN HỌC TỐT !!!

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn