Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = \(\sqrt{400}\)= 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)
=> AH = \(\frac{12.16}{20}=9,6\)( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = \(\sqrt{51,84}\) = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)
<=> \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)
<=> AB.CD = AC(BC - CD)
hay 12CD = 16.20 - 16CD
<=> 12CD+ 16CD = 320
<=> 28CD = 320
<=> CD = \(\frac{320}{28}\approx11.43\left(cm\right)\)
Độ dài cạnh BD là :
BD = BC - CD
BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )
Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^
A B C D H E K I F
a) Xét t/giác HBA và t/giác ABC
có: \(\widehat{B}\):chung
\(\widehat{BHA}=\widehat{A}=90^0\)(gt)
=> t/giác HBA đồng dạng t/giác ABC (g.g)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8 (cm)
Ta có: t/giác HBA đồng dạng t/giác ABC
=> HB/AB = AH/AC = AB/BC
hay HB/6 = AH/8 = 6/10 = 3/5
=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)
c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)
=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)
Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)
\(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)
=> \(\widehat{AHK}=\widehat{C}\) (2)
Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)
Xét t/giác AKI và t/giác ABC
có: \(\widehat{A}=90^0\): chung
\(\widehat{AIK}=\widehat{C}\)(cmt)
=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC
d) Do AD là đường p/giác của t/giác ABC => \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)
<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)
=> BD = 10 - 40/7 = 30/7 (cm)
DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)
DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)
Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)
a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)
AH=12*16/20=9,6cm
Xet ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=20/7
=>BD=60/7cm; CD=80/7cm
b: Sửa đề: AB,AC
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
AM=AH^2/AB=9,6^2/12=7,68(cm)
AN=AH^2/AC=9,6^2/16=5,76(cm)
\(S_{AMHN}=7.68\cdot5.76=44.2368\left(cm^2\right)\)
AB^2+AC^2=12^2+16^2=20^2
BC=20^2 SUY RA tam giac ABC vuong tai A
xet tam giac AHBva tam giac AbC(A=h=90):
ABH la goc chung suy ra 2 tam giac dong dang
b,vi ti so dien h bang binh phung ti so dong dang suy ra dien tinh abc/dien tinh abh=ab/acsuy ra dien tinh abh=72
thoi ban roi lam the thoi
khi bi phan boi thi lm gi bay gio ha cac b huhu......
tinh yeu la thu quai quy gi vay ....