\(\overrightarrow{AB}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 12 2021

1.

\(\overrightarrow{AB}.\overrightarrow{BC}=\overrightarrow{AB}.\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}.\left(-\overrightarrow{AB}\right)+\overrightarrow{AB}.\overrightarrow{AC}=-AB^2=-25\)

2.

\(\overrightarrow{AB}.\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=-\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AD}=-AB^2+0=-64\)

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng? a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC 3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)\(\overrightarrow{BN}\) ta được

a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

a) 2a b) 3a c) \(\frac{a}{2}\) d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)

0
19 tháng 5 2017

a) Có
\(\overrightarrow{BC}^2=\left(\overrightarrow{BA}+\overrightarrow{AC}\right)^2=\overrightarrow{BA}^2+\overrightarrow{AC}^2+2\overrightarrow{BA}.\overrightarrow{AC}\)
\(=\overrightarrow{BA}^2+\overrightarrow{AC}^2-2\overrightarrow{AB}.\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{\overrightarrow{BA}^2+\overrightarrow{AC}^2-\overrightarrow{BC^2}}{2}=\dfrac{5^2+8^2-7^2}{2}=20\).
\(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=\dfrac{20}{5.8}=\dfrac{1}{2}\).
Vì vậy \(\widehat{BAC}=60^o\).
b) Tương tự:
\(\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2+CB^2-AB^2}{2}=\dfrac{7^2+8^2-5^2}{2}=44\).

31 tháng 7 2019

Hỏi đáp Toán

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?a)  BM=\(\frac{2}{5}.BC\)           b)    CM=\(\frac{3}{5}.BC\)            c)    M nằm ngoài cạnh BC        d)   M nằm trên cạnh BC3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a)  BM=\(\frac{2}{5}.BC\)           b)    CM=\(\frac{3}{5}.BC\)            c)    M nằm ngoài cạnh BC        d)   M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta được 

a)  \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\)                                     b)   \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\)     

c)  \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}-\frac{2}{5}.\overrightarrow{BN}\)                                    d)   \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác  ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a)  \(\frac{a\sqrt{3}}{2}\)    b)    \(\frac{a}{2}\)       c) a         d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a)  \(a\sqrt{3}\)    b)    0           c) a                 d)   \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) là

a)  2a         b) 3a          c) \(\frac{a}{2}\)           d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\)      b)  cùng hướng với \(\overrightarrow{AD}\)      c) ngược hướng với \(\overrightarrow{AB}\)   d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\)     b)    \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\)    c)  \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\)  d)  \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a)  \(\overrightarrow{v}=\overrightarrow{AD}\)     b)  \(\overrightarrow{v}=\overrightarrow{AB}\)   c) \(\overrightarrow{v}=2\overrightarrow{AB}\)    d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b                    b) a-b                  c)b-a                     d) \(\left|a-b\right|\)

 

0
19 tháng 5 2017

A B C
a) \(\overrightarrow{AB}.\overrightarrow{AC}=0\) do \(AB\perp AC\).
b)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+a^2}=\sqrt{2}a\).
\(\overrightarrow{BA}.\overrightarrow{BC}=BA.BC.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)=a.\sqrt{2}a.cos45^o=a^2\).
c) \(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-a^2\).

30 tháng 3 2017

Đẳng thức đúng là: \(\overrightarrow{AB}+\overrightarrow{BD}=2\overrightarrow{BC}\)

Vậy chọn câu a)

27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

NV
11 tháng 10 2020

\(BC=AD=\sqrt{AC^2-AB^2}=2a\)

a/ \(T=\left|3\overrightarrow{AB}-4\overrightarrow{BC}\right|\Rightarrow T^2=9AB^2+16BC^2-24\overrightarrow{AB}.\overrightarrow{BC}\)

\(=9a^2+64a^2=73a^2\Rightarrow T=a\sqrt{73}\)

b/ \(T^2=4AB^2+9BC^2+12.\overrightarrow{BA}.\overrightarrow{BC}=4AB^2+9BC^2=40a^2\)

\(\Rightarrow T=2a\sqrt{10}\)

c/ \(T=\left|\overrightarrow{AD}+3\overrightarrow{BC}\right|=\left|\overrightarrow{AD}+3\overrightarrow{AD}\right|=\left|4\overrightarrow{AD}\right|=4AD=8a\)

d/ \(T=\left|2\overrightarrow{DC}-3\overrightarrow{DC}\right|=\left|-\overrightarrow{DC}\right|=CD=AB=a\)