K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

A B C D E G M N

Xét \(\Delta ABC\)có:

\(EA=EB\left(gt\right)\)

\(DA=DC\left(gt\right)\)

\(\Rightarrow ED\)là đường trung bình của \(\Delta ABC.\)

\(ED=\frac{1}{2}BC;\)\(ED\)//\(BC\left(1\right)\)

Xét \(\Delta GBC\)có:

\(MG=MB\left(gt\right)\)

\(NG=NC\left(gt\right)\)

\(\Rightarrow MN\)là đường trung bình \(\Delta GBC.\)

\(MN=\frac{1}{2}BC;\)\(MN\)//\(BC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow DE=MN;\)\(DE\)//\(MN.\)

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//MN và DE=MN

b:Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)

nên ΔGBC cân tại G

Suy ra: GB=GC

Suy ra: G nằm trên đường trung trực của BC(3)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra DE//IK và DE=IK

 

17 tháng 8 2016

a,Ta có AE=EB

Và AD=DC

ED là đường trung bình

ED//BC và ED=1/2BC               (1)

Ta lại có BM=MG

Và GN=NC

MN là đường trung bình

MN//BC và MN=1/2BC             (2)

Từ (1)(2) suy ra 

=>ED=MN

Và ED//MN

Vậy đpcm

b,mk k hỉu cho lắm đề câu b

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC
DO dó: ED là đường trung bình

=>ED//BC và ED=BC/2

Xét ΔGBC có

M,N lần lượt là trug điểm của GB và GC

nênMN là đường trung bình

=>MN//BC và MN=BC/2

Xét ΔGMN có

I là trung điểm của GM

K là trung điểm của GN

Do đó: IK là đường trung bình

=>IK//MN và IK=MN/2

=>IK//ED và IK=BC/4

Xét tứ giác IKDE có DE//IK

nên IKDE là hình thang

Xét ΔACE và ΔABD có

AC=AB

góc A chung

AE=AD
Do đó: ΔACE=ΔABD

Suy ra: CE=BD

Xét ΔEBC và ΔDCB có

EB=DC
EC=BD

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: góc GBC=góc GCB

hay ΔGBC cân tại G

=>GB=GC

=>GD=GE

GI=1/4GB

GK=1/4GC

mà GB=GC

nên GI=GK

=>ID=EK

=>EDKI là hình thang cân

b: DE=BC/2=5cm

IK=1/4BC=2,5cm

=>DE+IK=7,5cm

18 tháng 7 2021

△ABC có:
- D là trung điểm của AC (gt)
- E là trung điểm của AB (gt)
=> DE là đường trung bình của △ABC
=> DE // BC
△GBC có:
- I là trung điểm của GB (gt)
- K là trung điểm của GC (gt)
=> IK là đường trung bình của △GBC
=> IK // BC
Mà DE // BC, IK // BC => DE // IK (đpcm)


Do DE là đường trung bình của △ABC => DE = 1/2 BC
IK là đường trung bình của △GBC => IK = 1/2 BC
Từ đó suy ra: DE = IK (đpcm)

Xét ΔABC có

E là trung điểm của AB(gt)

D là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

I là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: IK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra DE//IK và DE=IK(Đpcm)

9 tháng 7 2018

A E B D C O M N

a, Xét t/g ABC có: AE = BE (gt), AD = CD (gt)

=> DE là đường trung bình của t/g ABC

=> DE // BC (1)

Xét t/g OBC có: OM = BM (gt) , ON = CN (gt)

=> MN là đường trung bình của t/g OBC

=> MN // BC (2) 

Từ (1) và (2) => DE // MN

b, Ta có: \(DE=\frac{BC}{2}\) (DE là đường trung bình của t/g ABC) (3)

\(MN=\frac{BC}{2}\) (MN là đường trung bình của t/g OBC) (4)

Từ (3) và (4) =>  DE = MN

15 tháng 3 2020

Hình tự vẽ

a) Trong tam giác ABC , có :

EA = EB ( CE là trung tuyến )

DA = DC ( DB là trung tuyến )

=> ED là đường trung bình của tam giác ABC

=> ED // BC (1) , DE = 1/2 BC (2)

Trong tam giác GBC , có :

MG = MB ( gt)

NG = NC ( gt)

=> MN là đương trung bình của tam giác GBC

=> MN // BC (3) , MN = 1/2 BC (4)

Từ 1 và 2 => ED // MN ( * )

Từ 3 và 4 => ED = MN ( **)

Từ * và ** => EDMN là hbh ( DHNB )

Bài làm

a) Xét tam giác ABC có:

E là trung điểm của AB ( do CE trung tuyến  )

D là trung điểm của AC ( Do BD trung tuyến )

=> ED là đường trung bình 

=> ED = 1/2 BC và ED // BC            (1) 

Xét tam giác GBC có:

M là trung điểm BG ( gt )

N là trung điểm GC ( gt )

=> MN là đường trung bình.

=> MN = 1/2 BC và MN // BC            (2) 

Từ (1)(2) => MN = ED và MN // ED

Xét tứ giác MNDE có:

MN = ED

MN // ED

=> MNDE là hình bình hành.

b) Để MNDE là hình chữ nhật 

<=> ME  |  MN

Giả sử tam giác ABC cân tại A

Nối AG

Xét tam giác ABG có:

E là trung điểm AB

M là trung điểm BG

=> ME là đường trung bình.

=> ME = 1/2 AG và ME // AG

Vì CE và BD ;à đường trung tuyến và cắt nhau tại G

=> G là giao điểm của 3 đường trung tuyến của tam giác ABC

=> AG là đường trung tuyến

Mà tam giác ABC cân ( theo giả sử )

=> AG vuông góc với BC

Hay AG cũng vuông góc với MN ( do BC // MN ở câu a )

Mà ME // AG

=> MN vuông góc với ME

Mà MNDE là hình bình hành

=> MNDE là hình chữ nhật.

cứ thế tự chứng minh là hình thoi rồi sẽ ra hình vuông nha. vì chỗ này dễ rồi. nên mik k chứng minh.

c) Vì MN = 1/2 BC ( cmt ) 

DE = 1/2 BC ( cmt )

=> MN + DE = 1/2 + BC + 1/2 BC = BC ( 1/2 + 1/2 ) = BC . 2/2 = BC . 1 = BC

=> MN + DE = BC ( đpcm )

# Học tốt #