Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: XétΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)
Do đó: ΔKBC=ΔHCB
b: Ta có: ΔKBC=ΔHCB
nên \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
c: Ta có: ΔKBC=ΔHCB
nên KB=HC
Ta có: AK+BK=AB
AH+HC=AC
mà BK=HC
và AB=AC
nên AK=AH
Xét ΔABC có AK/AB=AH/AC
nên KH//BC
Gọi giao điểm của KN và BC là V
Kẻ đường thẳng d qua K cắt BC tại L và song song với AN , ta có :
Vì KL // AN
=> Góc KLB = góc HCB (1)
Mà Góc KBL = góc HCB (từ câu a nếu chứng minh tam giác bằng nhau)
=> Góc KBL = góc KLB
=> Tam giác KLB cân tại K
=> KB = KL
Đồng thời KB = HC (cũng từ a)
=> KL = HC = CN (1) (giả thiết đề bài cho câu d)
Mặt khác cũng nhờ song song ,ta cũng có :
Góc LKV = góc CNV (2)
Góc KLV = góc NCV (3)
Xét tam giác KVL và tam giác NVC có :
(1)
(2) => tam giác KLV = tam giác NVC\
(3)
=> KV = VN
Vậy ......
Vì CK cắt BH tại M
Mà cả 2 đều là đường cao
=> AM cũng là đường cao
Vì tam giác ABC cân
=> AM là đường cao thì cũng là đường phân giác
=> góc BAL = góc CAL (1)
Gọi giao điểm của AM và BC là X
Ta có : AM vuông góc với BC tại X
IB vuông góc với BC tại B
=> AM // IB
=> Góc IBK = góc BAL
Mà ta lại có (1)
=> góc IBK = góc CAL (<=> góc HAM)
a) Xét \(\Delta BKC\) và \(\Delta CHB\) có:
BC (chung
\(\widehat{BKC}=\widehat{CHB}=90^0\)
\(\widehat{KBC}=\widehat{HCB}\) (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta BKC=\Delta CHB\left(ch-gn\right)\)
=> BH = CK (hai cạnh tương ứng)
b) Ta có: BH là đường cao \(\Delta ABC\)
CK là đường cao \(\Delta ABC\)
mà BH cắt CK tại M
=> M là trực tâm
=> AM là đường cao \(\Delta ABC\)
AM cắt BC tại N
mà \(\Delta ABC\) cân tại A
=> BN = NC
Xét \(\Delta BMN\) và \(\Delta CMN\) có:
MN (chung)
\(\widehat{MNB}=\widehat{MNC}=90^0\)
BM = NC (cmt)
Do đó: \(\Delta BMN=\Delta CMN\left(c-g-c\right)\)
=> BM = CM (hai cạnh tương ứng)
=> \(\Delta BMN\) cân tại M
mik chỉ bt thế thui
1)
c) Xét Tam giác AHB và tam giác AKC; có :
AB=AC(gt)
Chung góc A
=> tg AHB= tg AKC(ch-gn)
=> AK=AH
=> tam giác AKH cân tại A
=> góc AKH = (180 độ - góc A )rồi chia cho 2
tam giác ABC cân tại A => góc B = (180 độ - góc A ) rồi chia 2
=> góc AKH = góc B
Mà góc này ở vị trí đồng vị nên KH//BC
d) Muốn chứng minh thì bạn làm như sau :
Kẻ KH//AC sao cho H thuộc BC
Rồi lấy M là trung điểm BC
Ta cm :M cũng là trung điểm KN
tam giác ABC cân tại A => góc ABC = góc ACB
KH//AC => góc KHB = góc ACB
=> góc ABC = góc KHB
=> tam giác KHB cân tại K
=> KH=KB
bạn tự CM : KB=HC nhé
KB=HC mà HC=CN => KB=CN mà KH=KB => KH=CN
r bạn xét tam giác KMH = tam giác NMC (c-g-c)
=> MD=ME
rồi từ đó bạn cũng cm được góc KMN = 180 độ
=> M là trung điểm DE => đpcm