Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D
Trên tia đối của MA lấy điểm D sao cho MA = MD
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (cách vẽ)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
\(\Rightarrow AB=CD\)(2 cạnh tương ứng)
Xét \(\Delta ACD\) có: \(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)
Xét \(\Delta MAB\)có: \(AM>AB-BM\)
Xét \(\Delta MAC\)có: \(AM>AC-MC\)
\(\Rightarrow AM+AM>AB-BM+AC-MC\)
\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)
\(\Rightarrow2AM>AB+AC-BC\)
\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
B D M A C
Áp dụng bất đẳng thức tam giác với hai tam giác AMB và AMC ,ta lần lượt có :
AM > AB - BM
AM > AC - MC
Cộng theo từng vế hai bất đẳng thức trên,ta có :
2AM > AB + AC - (BM + MC) = AB + AC - BC hay \(AM>\frac{AB+AC-BC}{2}\) (1)
Trên tia đối của tia MA lấy điểm D sao cho MD = MA
Xét \(\Delta AMB\)và \(\Delta DMC\)có :
AM = DM(gt)
MB = MC(gt)
\(\widehat{M}\)chung
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{MAB}=\widehat{MDC}\)(hai góc tương ứng)
=> CD = AB(hai cạnh tương ứng)
Xét \(\Delta ACD\),theo bất đẳng thức tam giác ta có :
AD < AC + CD
=> \(2AM< AC+AB\)
=> \(AM< \frac{AB+AC}{2}\)(2)
Từ (1) và (2) suy ra \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\)
A) ta có :AB2=32=9
AC2=42=16
BC2=52=25
=>AB2+AC2=BC2(định lí pytago đảo)
=> tam giác ABC là tam giác vuông tại A
Chúc bạn học tốt!!!
a, Ta có :
\(AB^2+AC^2=3^2+4^2=9+16=25\)
\(BC^2=5^5=25\)
Vì AB^2 + AC^2 = BC^2
=> \(\Delta\)ABC là tam giác vuông tại A ( Pi - ta - go đảo )
b, Xét \(\Delta\)ABH và \(\Delta\)DBH ta có
^A = ^D = 900
AB = BD (gt)
=> \(\Delta\)ABH = \(\Delta\)DBH (ch-cgv)
=> ^HBD = ^ABH (tương ứng)
Vậy BH là p/g ^ABH
a Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: KB=KD
giup mik vs
mink khong biet ban a