K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Các câu sau, câu nào đúng,câu nào sai?

a) Mọi số hữu tỉ dương đều lớn hơn 0      Đ

b) Nếu a là số hữu tỉ âm thì a là số tự nhiên       S

c) Nếu a là số tự nhiên thì a là số hữu tỉ âm            S

d) 0 là số hữu tỉ dương                             S

 a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d

16 tháng 6 2019

Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.

(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.

 

Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.

Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:

Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì

a)     Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.

b)     Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ  modulo m.

Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác

            (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).

 

Ta có  

Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì

(ax1,a x2, …, axj(m))  cũng là một hệ thặng dư thu gọn modulo m.

 

Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.

 

Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.

~Hok tốt`

P/s:Ko chắc

17 tháng 6 2019

\(a< b< c< d< e< f\)

\(\Rightarrow a+c+e< b+d+f\)

\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)

4 tháng 7 2015

Do -3 là số âm(-3<0)

=>

a)y>0 <=>2a-1<0<=>2a<1<=>a<1/2

b)y<0<=>2a-1>0<=>2a>1<=>a>1/2

c)y không âm không dương=>y=0<=>2a-1=0<=>2a=1<=>a=1/2

21 tháng 7 2017

Bài 1:

a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu

Mà -2017 là âm 

=> 2m - 8 cũng là âm

=> 2m < 8

=> m < 4 

Vậy với m < 4 thì x là số hữa tỉ dương

b)   Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác  dấu

Mà -2017 là âm 

=> 2m - 8  là dương

=> 2m > 8 

=> m > 4 

Vậy với m > 4 thì x là số hữa tỉ âm

c)  Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )

=> 2m - 8 = 0

=> 2m = 8

=> m = 4

Vậy với m = 4 thì x không âm không dương

Bài 2:

Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)

\(\Rightarrow2x+6-4-6⋮x+3\)

\(\Rightarrow\left(2x+6\right)-10⋮x+3\)

\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))

\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)

Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên

13 tháng 6 2019

1.

a) m > 2011

b) m<2011

c) m =2011

2.

a) \(m< \frac{-11}{20}\)
 

b)\(m>\frac{-11}{20}\)

3. -101 chia hết cho (a+7)

4. (3x-8) chia hết cho (x-5)

5. đề sai, N chứ ko phải n, tui ngu như con bòoooooooooooooooooooooo

13 tháng 6 2019

5) Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}}\)

\(\Rightarrow\left(14m+63\right)-\left(14m+62\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\left\{-1;1\right\}\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=\left\{-1;1\right\}\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản (Vì tử và mẫu của p/s có ƯC là 1)

19 tháng 6 2015

sao không ai trả lời hết vậy, mình đang cần gấp vào ngày mai

a) Để x là số dương 

=> a - 3 > 0

a > 3 

Vậy để \(x=\frac{a-3}{2}\)là số dương thì a > 3

b) Để x là số âm 

=> a - 3 < 0

=> a < 3

Vậy để \(x=\frac{a-3}{2}\)là số âm thì a < 3

c) Để x = 0

\(\Rightarrow\frac{a-3}{2}=0\)

=> a - 3 = 0

a = 3

Vậy để x không âm cũng không dương thì a = 3