Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
1) \(\Delta'=1-m>0\forall m< 1\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt
2) Do a = 1; c = -1 nên a và c trái dấu
Do đó phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)
a. Thay m=1 vào pt ta được: \(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b, Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow4-4\left(m-1\right)>0\Leftrightarrow m< 2\)
Theo hệ thức viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)
Có \(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)
\(\Leftrightarrow-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
\(\Leftrightarrow4m^2-4m-8=0\)
<=>\(\left[{}\begin{matrix}m=2\left(L\right)\\m=-1\left(Tm\right)\end{matrix}\right.\)
Vậy m=-1
Ta có:
\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt với mọi GT của m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)
Thay vào A ta được:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2\)
\(A=\left(-m-2\right)^2-5\left(m-1\right)\)
\(A=m^2+4m+4-5m+5=m^2-m+9\)
\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)
\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)
Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)
Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2
= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5
= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m
Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
1, Với x >= 0 ; x khác 1
\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
mình sửa đề câu 2 nhé
a, \(x^2+mx-1=0\)
\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)
Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)
Khi đó:
$2x_1^3+(m+2)x_2^2=5$
$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$
$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$
\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)
\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)
\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)
Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.
sai môn học rồi bạn
kê