K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thiếu rồi bạn

13 tháng 1 2022

\(a,\Delta'=\left(-m\right)^2-\left(4m-5\right)=m^2-4m+5=\left(m^2-4m+4\right)+1=\left(m-2\right)^2+1>0\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

câu b thiếu

a: Δ=(-2m)^2-4(m-2)

=4m^2-4m+8=(2m-1)^2+7>=7>0

=>PT luôn có hai nghiệm phân biệt

b: x1^2+x2^2-6x1x2

=(x1+x2)^2-8x1x2

=(2m)^2-8(m-2)

=4m^2-8m+16=(2m-2)^2+8>=8

=>24/(2m-2)^2+8<=3

=>M>=-3

Dấu = xảy ra khi m=1

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

30 tháng 4 2020

a) Phương trình có \(\Delta'=m^2-4m+8=\left(m-2\right)^2+4>0\forall m\)nên phương trình có 2 nghiệm phân biệt với mọi m

b) Do đó, theo Viet với mọi m ta có: \(S=-\frac{b}{a}=2m;P=\frac{c}{a}=m-2\)

\(M=\frac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{-24}{4m^2-8m+16}=\frac{-6}{m^2-2m+4}\)

\(=\frac{-6}{\left(m-1\right)^2+3}\)

Khi m=1 ta có (m-1)2+3 nhỏ nhất

=> \(-M=\frac{6}{\left(m-1\right)^2+3}\)lớn nhất khi m=1

=> \(M=\frac{-6}{\left(m-1\right)^2+3}\)nhỏ nhất khi m=1

14 tháng 5 2015

a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)\(\geq\)0 với mọi m

Vậy: PT có 2 nghiệm x1, x2 với mọi m

b)Theo Vi-et: x1 + x= m và x1x= m - 1

Do đó: A = x1+ x2- 6x1x= (x+ x2)- 8x1x= m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m

đúng nhé

Vậy: GTNN của A là -8 <=> m = 4

Ta có: \(\Delta'=2m^2+4>0\forall m\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)

Mặt khác: \(x_1^2+x_2^2=20\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)

  Vậy ...

12 tháng 5 2021

sai rồi thì phải

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)

=>(5) luôn có nghiệm

b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)

=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)

=>\(m^2-2m+1+4m-m^2=2m+1\)

=>2m+1=2m+1(luôn đúng)

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.