K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

1)Tim cac gia tri cua m de phuong trinh (m2 - 1)x + m+1 = 0 co nghiem duy nhat.

                                            Giải

- Để phương trình có nghiệm duy nhất thì a ≠0 <=> m^2-1≠0 

                                                                         <=>m≠1 và m≠-1

29 tháng 4 2017

Đã là BPT thì đề không được ghi f(x)=0 nha bạn mâu thuẫn quá!

f(x)=x2-2(m+2)x+2m2+10m+12(1)

Để f(x) lớn hơn 0 với mọi x thuộc R thì

\(\left\{{}\begin{matrix}\Delta'\ge0\\a>0\\\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(m+2\right)^2-2m^2-10m-12\ge0\\1>0\left(lđ\right)\end{matrix}\right.\)

<=>-m2-6m-8\(\ge\)0

<=>-(m+2)(m+4)\(\ge\)0

cho (m+2)(m+4)=0 <=> m=-2 hoặc m=-4

Bảng xét dấu:

x f(x) -∞ -4 -2 +∞ 0 0 - + -

Vậy m=[-4;-2]

29 tháng 4 2017

Cam on ban nha mk ghi lon

10 tháng 12 2020

\(pt\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-4mx-4=0\left(1\right)\end{matrix}\right.\)

để pt có 3 nghiệm pb thì pt(1) phải có 2 nghiệm pb khác 1

+)xét th pt(1) có 1 nghiệm bằng 1

khi đó ta có \(1-4m-4=0\Leftrightarrow m=\dfrac{-3}{4}\)

suy ra để pt(1) phải có 2 nghiệm pb khác 1 thì \(m\ne\dfrac{-3}{4}\)

+)để pt(1) có 2 nghiệm pb thì ac<0\(\Leftrightarrow-4< 0\) (luôn đúng với mọi m)

vậy để pt có 3 nghiệm pb thì \(m\ne\dfrac{-3}{4}\)

NV
12 tháng 9 2021

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

12 tháng 9 2021

e cam on , vay em lam dung roi :^^

2 tháng 1 2021

ĐK: \(x\ne\pm1\)

\(\dfrac{x^2+mx+2}{x^2-1}=1\)

\(\Leftrightarrow x^2+mx+2=x^2-1\)

\(\Leftrightarrow mx=-3\)

Yêu cầu bài toán thỏa mãn khi \(\left[{}\begin{matrix}m=0\\-\dfrac{3}{m}=\pm1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm3\end{matrix}\right.\)

Vậy \(m=0;m=\pm3\Rightarrow A\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2017

Lời giải:

Để phương trình trên có hai nghiệm \(x_1,x_2\) thì trước tiên \(m\neq 0\)

\(\Delta'=1-2m>0\Leftrightarrow m<\frac{1}{2}\)

Áp dụng định lý Viete: \(x_1+x_2=\dfrac{2}{m}\). Mặt khác \(x_1+x_2=2m(m+1)\)

\(\Rightarrow \frac{2}{m}=2m(m+1)\Leftrightarrow m^3+m^2-1=0\) $(1)$

Giải PT trên, ta thấy nếu \(m\) là nghiệm $(1)$ thì \(m>\frac{1}{2}\), do đó không tồn tại $m$ thỏa mãn.

10 tháng 3 2017

thank b nha