Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình
hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)
Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1
b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)
\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)
Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)
\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)
Vậy với \(m=0\)thỏa mãn yêu cầu bài toán
ta có \(x^2_2=2mx_2-m^2+m-1\)
nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)
theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)
thay nguowijc lại thấy m=3 thỏa mãn đề bài
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)
\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)
Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)
\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)
\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)
\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)
\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)
Tự giải tiếp :D
Ta có: \(\Delta=b^2-4ac=1-4\left(1-m\right)=4m-3\)
Để pt có nghiệm x1;x2 thì \(\Delta\ge0\)
<=> 4m-3 >0
<=> \(m\ge\frac{3}{4}\)(*)
Theo định lý Vi-et ta có: \(x_1+x_2=-\frac{b}{a}=1\) và \(x_1x_2=\frac{c}{a}=1-m\)
Ta có: \(5\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+4=5\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+4=\frac{5}{1-m}-\left(1-m\right)+4=0\)
\(\Leftrightarrow\hept{\begin{cases}5-\left(1-m\right)^2+4\left(1-m\right)=0\\m\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m^2+2m-8=0\\m\ne1\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\\m=-4\end{cases}}}\)
Kết hợp với điều kiện (*) ta có m=2 là giá trị cần tìm