Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
Bài 3:
a, A= n+3 / n-1
A = n-1+4 / n-1
A = 1 + 4/n-1
Để A là số nguyên thì 4/n-1 nguyên
=>4 chia hết n-1
=> n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {2;0;3;-1;4;-3}
b, B = 2n+3 / n-1
B = 2(n-1) + 5 / n-1
B= 2 + 5/n-1
Để B nguyên thì 5/n-1 nguyên
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={1;-1;5;-5}
=> n thuộc {2;0;6;-4}
2/ Ta có : a+b=c+d
=>d=a+b-c
Vì a.b=c.d+1 Nên ab-cd=1
Mà d= a+b-c nên ta có:
ab-c(a=b-c)=1
=>ab-ac-bc+c^2
=>a(b-c)-c(b-c)=1
=>a-c=b-c
=>a=b
3/2 và 9/3 tick minh chac chan dung
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh