Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP có MN=MP
nên ΔMNP cân tại M
=>\(\widehat{N}=\widehat{P}\)
b: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
=>\(\widehat{NMI}=\widehat{PMI}\)
=>MI là phân giác của góc NMP
c: Ta có: MN=MP
=>M nằm trên đường trung trực của NP(1)
ta có: IN=IP
=>I nằm trên đường trung trực của NP(2)
Từ (1) và (2) suy ra MI là đường trung trực của NP
a) Xét tam giác MNP có: MN = MP (gt).
=> Tam giác MNP cân tại M.
=> Góc N = Góc P (Tính chất tam giác cân).
b) Xét tam giác MNP cân tại M:
MI là trung tuyến (I là trung điểm của cạnh NP).
=> MI là phân giác của góc NMP (Tính chất các đường trong tam giác).
c) Xét tam giác MNP cân tại M:
MI là trung tuyến (I là trung điểm của cạnh NP).
=> MI là đường cao (Tính chất các đường trong tam giác).
=> MI vuông góc với NP (đpcm).
a: Xét ΔMNP có MN=MP
nên ΔMNP cân tại M
hay \(\widehat{N}=\widehat{P}\)
a)Ta có cạnh MN = cạnh MP suy ra tam giác MNP cân tại M
Suy ra góc N bằng góc P
b) xét tam giác NMP cân tại M có
MI là đường trung tuyến suy ra MI cũng là tia phân giác của tam giác NMP
Vậy MI là tia phân giác của góc NMP
c) xét tam giác MNP cân tại M có
MI là tia phân giác của tam giác NMP
MI cũng là đường cao
Vậy MI vuông góc NP
HT
a)Ta có cạnh MN = cạnh MP suy ra tam giác MNP cân tại M
Suy ra góc N bằng góc P
b) xét tam giác NMP cân tại M có
MI là đường trung tuyến suy ra MI cũng là tia phân giác của tam giác NMP
Vậy MI là tia phân giác của góc NMP
c) xét tam giác MNP cân tại M có
MI là tia phân giác của tam giác NMP
MI cũng là đường cao
Vậy MI vuông góc NP
HT
a: Xét ΔMNP có MN=MP
nên ΔMNP cân tại M
hay \(\widehat{N}=\widehat{P}\)
a) Xét tam giác MNI và tam giác MPI có:
MI chung
NI=DI( I là trung điểm của NP)
MN=NP(gt)
=>Tam giác MNI=tam giác MPI
=>Góc NIM=góc PMI
=> MI là tia phân giác của góc NMP