Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. MA + MC = MB +MD
<=> MA + MC = MA + AB + MC + CD
<=>MA + MC = MA + MC +0
2. A B C J I R S P Q
RJ+IQ+PS=RA+ẠJ+IB+BQ+PC+CS
= (RA+CS) + (AJ+IB) + (BQ+PC)
= 0+0+0=0
a: \(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=2\cdot CM=5\sqrt{3}\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=5\sqrt{3}\)
Sửa đề: Chứng minh \(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
\(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AM}\)
\(\overrightarrow{AC}-\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AC}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AC}-\overrightarrow{MC}\)
=>\(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)