Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(y^2=xz\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}\)(1)
\(x^2=yt\Rightarrow\dfrac{x}{y}=\dfrac{t}{x}\) (2)
Từ (1) và (2) , ta suy ra :\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)\(\)(3)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\Rightarrow k^3=\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)
\(\Rightarrow\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)
\(\Rightarrow\dfrac{x^3}{t^3}=\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}\)
\(\Rightarrow\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}=\left(\dfrac{x}{t}\right)^3\)
Đề có sai không vậy bạn
\(\left\{{}\begin{matrix}y^2=xz\\x^2=yt\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{y}{z}\\\dfrac{x}{y}=\dfrac{t}{x}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
Đặt:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)
Thay vào tính :v
Lời giải:
\(y^2=xz\Rightarrow \frac{y}{z}=\frac{x}{y}\)
\(z^2=yt\Rightarrow \frac{z}{t}=\frac{y}{z}\)
Vậy \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}\)
Ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{x^3+y^3+z^3}{y^3+z^3+t^3}(1)\) (áp dụng tính chất dãy tỉ số bằng nhau)
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}(2)\)
Từ \((1);(2)\Rightarrow \frac{x^3+y^3+z^3}{y^3+z^3+t^3}=\frac{x}{t}\) (đpcm)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
b: \(3x^2y^3=\dfrac{1}{9}\)
\(\Leftrightarrow3x^2=\dfrac{1}{9}:\dfrac{1}{27}=3\)
=>x=1 hoặc x=-1
a: \(A=\dfrac{-2}{3}\cdot\left(-27\right)\cdot4\cdot\dfrac{1}{2}=18\cdot2=36\)
Bài 1:
Giải:
Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Mà \(xyz=30\)
\(\Rightarrow240k^3=30\)
\(\Rightarrow k^3=\dfrac{1}{8}\)
\(\Rightarrow k=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)
Vậy...
Bài 2: sai đề
Bài 3:
Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Ta có: \(x+2y+3z=38\)
\(\Rightarrow2k+1+8k-6+18k+15=38\)
\(\Rightarrow28k=28\)
\(\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)
Vậy...
1) Ta có :
\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)
\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)
=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Thay vào đẳng thức xyz = 30
=> 8k.6k.5k = 30
<=> 240k3 = 30
<=> k3 = 8
<=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)
b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .
c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)
=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Thay vào đẳng thức , ta có :
x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38
=> 28k = 38
=> k = \(\dfrac{19}{14}\)
Vậy .....
2. Tham khảo thêm tại đây nha bạn
https://hoc24.vn/hoi-dap/question/417550.html
Bạn thay x, y, z vào đơn thức là được mà! Mấy đơn thức này còn thu gọn rồi! Bạn tự làm đi
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{47}=\dfrac{z^2}{9}\)
Áp dụng t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{25}=9\\\dfrac{y^2}{49}=9\\\dfrac{z^2}{9}=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=15\\x=-15\end{matrix}\right.\\\left[{}\begin{matrix}y=21\\y=-21\end{matrix}\right.\\\left[{}\begin{matrix}z=9\\z=-9\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
Ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{7}\right)^2=\left(\dfrac{z}{3}\right)^2\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Theo tính chất của dãy các tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49-9}=\dfrac{585}{65}=9\)
Vậy:
\(\left(\dfrac{x}{5}\right)^2=3^2\Rightarrow\dfrac{x}{5}=3\) hoặc \(\dfrac{x}{5}=-3\)
\(\left(\dfrac{y}{7}\right)^2=3^2\Rightarrow\dfrac{y}{7}=3\) hoặc \(\dfrac{y}{7}=-3\)
\(\left(\dfrac{z}{3}\right)^2=3^2\Rightarrow\dfrac{z}{3}=3\) hoặc \(\dfrac{z}{3}=-3\)
Do đó:
x =15 x = -15
y =21 hoặc y = -21
z = 9 z = -9
\(y^2=xz;x^2=yt\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z};\dfrac{x}{y}=\dfrac{t}{x}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
Đặt:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)
Thay vào tính
Theo đề bài đã cho, ta có:
\(y^2\)=xz => \(\dfrac{x}{y}\)=\(\dfrac{y}{z}\) (1)
\(z^2\)=yt => \(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{x}{y}\)=\(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)=\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)
Mặt khác\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\) =\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3y^3z^3}{y^3z^3t^3}\)=\(\dfrac{x^3}{t^3}\)
Từđó ta suy ra \(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)= \(\dfrac{x^3}{t^3}\)
( bạn ghi sai đề nên mk đã sửa lại )