Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)
= (1 + 1/x)(1 + 1/y)
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy)
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\)
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
Áp dụng 2 bđt sau \(\hept{\begin{cases}a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\\\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\end{cases}}\)(tự chứng minh nhé)
\(A=\left(\frac{1}{x}+x\right)^2+\left(\frac{1}{y}+y\right)^2\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+x+y\right)^2}{2}\ge\frac{\left(\frac{4}{x+y}+1\right)^2}{2}=\frac{\left(4+1\right)^2}{2}=\frac{25}{2}\)
Dấu "=" tại x = y = 1/2
\(A=\frac{x^2+\left(a+b\right)x+ab}{x}=x+\frac{ab}{x}+a+b\)
\(\Rightarrow A\ge2\sqrt{\frac{ab.x}{x}}+a+b=2\sqrt{ab}+a+b\)
Dấu "=" xảy ra khi \(x=\sqrt{ab}\)
b/ \(x^2+x=y^2\)
- Với \(x=0\Rightarrow y=0\)
- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}x^2+x>x^2\\x^2+x< x^2+2x+1=\left(x+1\right)^2\end{matrix}\right.\)
\(\Rightarrow x^2< y^2< \left(x+1\right)^2\Rightarrow\) không tồn tại y nguyên thỏa mãn
- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}x^2+x=\left(x+1\right)^2-\left(x+1\right)\ge\left(x+1\right)^2\\x^2+x< x^2\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2\le y^2< x^2\Rightarrow y^2=\left(x+1\right)^2\)
\(\Rightarrow x^2+x=\left(x+1\right)^2\Rightarrow x+1=0\Rightarrow x=-1\Rightarrow y=0\)