K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a) https://hoc24.vn/hoi-dap/question/398481.html

b)

a2 + b2 + c2 = ab + ac + bc

<=> 2a2 + 2b2 + 2c2 = 2ac + 2ab + 2bc

<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b2 - 2bc + c2) = 0

<=> (a - b)2 + (a - c)2 + (b - c)2 = 0

<=> a = b = c

17 tháng 7 2017

1. Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

=> \(a^2y^2+b^2x^2=2axby\)

=> \(a^2y^2+b^2x^2-2axby=0\)

=> \(a^2y^2+b^2x^2-2aybx=0\)

=> \(\left(ay-bx\right)^2=0\)

\(\left(ay-bx\right)^2\ge0\)

Dấu '' = '' xảy ra \(\Leftrightarrow\) \(ay-bx=0\)

\(\Leftrightarrow\) \(ay=bx\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

2. Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

=> \(2a^2+2b^2+2c^2=2ab+2bc+2ac\)

=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Ta thấy:

\(\left(a-b\right)^2\ge0\); \(\left(a-c\right)^2\ge0\); \(\left(b-c\right)^2\ge0\)

=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Dấu '' = '' xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)

\(\Leftrightarrow\) a = b = c

4 tháng 7 2017

\(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

Thay x - y = 7

\(\Rightarrow A=49+14+37=100\)

Vậy A = 100 khi x - y = 7

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà

23 tháng 6 2017

a, \(4x+6y-x^2-y^2+2\)

\(=-\left(x^2+y^2-4x-6y-2\right)\)

\(=-\left(x^2-2x-2x+4+y^2-3y-3y+9-15\right)\)

\(=-\left[\left(x^2-2x\right)-\left(2x-4\right)+\left(y^2-3y\right)-\left(3y-9\right)-15\right]\)

\(=-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2-15\ge-15\)

\(\Rightarrow-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\le15\)

Để \(-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]=15\) thì \(\left(x-2\right)^2+\left(y-3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy GTLN của biểu thức là 15 đạt được khi và chỉ khi \(x=2;y=3\)

Câu b làm tương tự! Chúc bạn học tốt!!!

23 tháng 6 2017

Thui đang chán không có bài :) làm lun:

b, \(-x^2-4y^2-z^2+2x+12y-4z-10\)

\(=-\left(x^2+4y^2+z^2-2x-12y+4z+10\right)\)

\(=-\left(x^2-x-x+1+4y^2-6y-6y+9+z^2+2z+2z+4-4\right)\)

\(=-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\)

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\left(x-1\right)^2\ge0;\left(2y-3\right)^2\ge0;\left(z+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\ge-4\)

\(\Rightarrow-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\le4\)

với mọi giá trị của \(x;y;z\in R\).

Để \(-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]=4\) thì

\(\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y-3\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

Vậy .....

Chúc bạn học tốt!!!

11 tháng 9 2017

Bài 1:

a) \(9x^2-6x+2\)

\(\Leftrightarrow9x^2-6x+1+1\)

\(\Leftrightarrow\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x,1>0\)

\(\Rightarrow9x^2-6x+2\) luôn dương với mọi x.

b) \(x^2+x+1\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x,\dfrac{3}{4}>0\)

\(\Rightarrow x^2+x+1\) luôn dương với mọi x.

Bài 2 :

a) \(A=x^2-3x+5\)

\(\Leftrightarrow A=x^2-3x+2+3\)

\(\Leftrightarrow A=\left(x-2\right)\left(x-1\right)+3\)

\(\left(x-2\right)\left(x-1\right)\ge0\forall x\) => \(A\ge3\)

Vậy GTNN A đạt được = 3 khi và chỉ khi x = 2 hoặc x = 1.

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Leftrightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Leftrightarrow B=5x^2+5\)

\(\Leftrightarrow B=5\cdot\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

=> GTNN của B đạt được = 5 khi và chỉ khi x = 0.

Bài 3 :

a) \(A=-x^2+2x+4\)

Làm tương tự ta có \(A_{MAX}=5\) khi và chỉ khi x = 1.

b) \(B=-x^2+4x\)

Làm tương tự ta có \(B_{MAX}=4\) khi và chỉ khi x = 2.

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

2 tháng 7 2017

có thì có thật , nhưng cho bạn kiểu j

2 tháng 7 2017

sách hay cái zì bạn?nếu đề thi hay bài tập bạn chụp rùi gửi mail(lethihuong34567890@gmail.com) cho mk đc hơmhihi? còn nếu sách thì chỉ cần chụp bìa dc gùihihi

16 tháng 5 2017

Ta có: (a2 + b2)(x2 + y2) = (ax + by)2

<=> a2x2 + a2y2 + b2x2 + b2y2 = a2x2 + 2axby + b2y2

<=> a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2 = 0

<=> (a2y2 - axby) + (b2x2 - axby) = 0

<=> ay(ay - bx) - bx(ay - bx) = 0

<=> (ay - bx)2 = 0

<=> ay - bx = 0

Vậy bài toán đã được chứng minh

17 tháng 5 2017

Sửa đề: thì \(ay-bx=0\)

Giải:

Xét hiệu: \(\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2\) \(-2axby\)

\(=a^2y^2-2axby+b^2x^2\)

\(=\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\) (Đpcm)