Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Ta có :
\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )
\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\) ( 3 )
Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được :
\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)
\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)
Theo đề bài thì \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)
Thấy đúng thì tk nka !111
Bài 3:
ta có : \(a^4+b^4\ge2a^2b^2\)
Cộng \(a^4+b^4\) vào 2 vế ta được:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)
\(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)
mà theo bài thì \(a+b>1\)\(\Rightarrow dpcm\)
TK MK NKA !!!
2/a/\(\Leftrightarrow9x^2-18x+9+y^2-6y+9+2z^2+4z+2=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\).Từ đó suy ra
\(\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
b/\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bzx+cxy=0\)
Ta có \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bzx+cxy}{abc}=1\)
\(\RightarrowĐPCM\)
1/Mạn phép sửa đề :\(\left\{{}\begin{matrix}3x^2+y^2+2x-2y-1=0\left(1\right)\\2x\left(x+y\right)=2\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) đc \(x^2-2xy+y^2+2x-2y-1=-2\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
Suy ra x-y=-1.Thế ngược lại vào 2 tìm đc x,y
.Nếu mà bạn giữ nguyên đề như vậy thì
Giải phương trình để tìm x bằng cách tìm a, b, và c
của phương trình bậc hai sau đó áp dụng công thức phương trình bậc hai. x=−1−√−3y2+6y+43 Lớp 9 x=−1+√−3y2+6y+43Đăng từng bài thôi nha bạn
Bài 1 : Năm nay mới lên lớp 8 -_-
Bài 2 :
\(a)\)
* Câu A :
\(A=x^2+4x-7\)
\(A=\left(x^2+4x+4\right)-11\)
\(A=\left(x+2\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé )
Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)
* Câu B :
\(B=2x^2-3x+5\)
\(2B=4x^2-6x+10\)
\(2B=\left(4x^2-6x+1\right)+9\)
\(2B=\left(2x-1\right)^2+9\ge9\)
\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)
* Câu C :
\(C=x^4-3x^2+1\)
\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)
\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)
Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)
Chúc bạn học tốt ~
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
Hai BĐT đều có dấu "=" xảy ra
a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y\)
b/ Áp dụng câu a:
\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1. áp dụng BĐT cô-si:
\(\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}\ge2\sqrt{\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}}=2\sqrt{\frac{c+ab}{\frac{8}{9}}}\)
Tương tự: \(\frac{a+bc}{b+c}+\frac{b+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+bc}{\frac{8}{9}}}\) và \(\frac{a+ac}{a+c}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt[]{\frac{b+ac}{\frac{8}{9}}}\)
cộng vế theo vế :M= \(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}+\frac{a+b}{\frac{8}{9}}+\frac{b+c}{\frac{8}{9}}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+b+c+ab+bc+ac}{\frac{8}{9}}}\)(1)
mà a+b+c=1 và \(ab+bc+ac\le\frac{1}{3}\) ( tự chứng minh từ \(a^2+b^2+c^2\ge ab+bc+ac\) =>.....)
thay vào(1) => đpcm
cái chỗ \(2\sqrt{\frac{c+ab}{a+b}.\frac{a+b}{\frac{8}{9}}}\) là nhân chứ không phải cộng nha