Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Phương trình hoành độ giao điểm:
\(\begin{align} & {{x}^{2}}=\left( 2a+1 \right)x-{{a}^{2}} \\ & \Leftrightarrow {{x}^{2}}-\left( 2a+1 \right)x+{{a}^{2}}=0 \\ & \Delta ={{\left[ -\left( 2a+1 \right) \right]}^{2}}-4.1.{{a}^{2}}=4a+1 \\ \end{align}\)
Để (d) cắt (P) tại 2 điểm phân biệt thì $\Delta >0\Rightarrow 4a+1>0\Rightarrow a>-\dfrac{1}{4}$
Theo hệ thức Vi – ét, ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=2a+1\left( 1 \right) \\ & {{x}_{1}}{{x}_{2}}={{a}^{2}}\left( 2 \right) \\ \end{align} \right.\)
Theo đề bài, ta có: ${{x}_{1}}-4{{x}_{2}}=0\left( 3 \right)$
Kết hợp (1) và (3), ta được: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2a + 1\\ {x_1} - 4{x_2} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = \dfrac{{8a + 4}}{5}\\ {x_2} = \dfrac{{2a + 1}}{5} \end{array} \right.\left( * \right)\)
Thay (*) vào (2), ta được:
\(\begin{array}{l} \left( {\dfrac{{8a + 4}}{5}} \right).\left( {\dfrac{{2a + 1}}{5}} \right) = {a^2}\\ \Leftrightarrow \dfrac{{\left( {8a + 4} \right)\left( {2a + 1} \right)}}{{25}} = {a^2}\\ \Leftrightarrow 16{a^2} + 16a + 4 = 25{a^2}\\ \Leftrightarrow 9{a^2} - 16a - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l} a = 2\left( {tm} \right)\\ a = - \dfrac{2}{9}\left( {tm} \right) \end{array} \right. \end{array}\)
1/
Phương trình \(x^2-2\left(k+3\right)x+2k-1=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=4\left(k+3\right)^2-4\left(2k-1\right)\)
= \(4k^2+24k+36-8k+4\)
= \(4k^2+16k+40\)
= \(\left(2k+4\right)^2+24\)
Ta có: \(\left(2k+4\right)^2\ge0\) với mọi k
\(\Rightarrow\left(2k+4\right)^2+24>0\) với mọi k
\(\Rightarrow\Delta>0\) với mọi k
\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi k
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2k+6\\x_1.x_2=2k-1\end{matrix}\right.\)
Theo đề bài ta có:
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\)
\(\Leftrightarrow\dfrac{x_2+x_1+3}{x_1x_2}=\dfrac{2x_1x_2}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2+3-2x_1x_2=0\)
\(\Leftrightarrow2k+6+3-2\left(2k-1\right)=0\)
\(\Leftrightarrow-2k=-11\)
\(\Leftrightarrow k=\dfrac{11}{2}\)
Vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\) thì \(k=\dfrac{11}{2}\)
Pt hoành độ giao điểm: \(x^2-mx-5=0\) (1)
Để (P) cắt d tại 2 điểm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt
Do \(a.c=1.\left(-5\right)=-5< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu
Theo Viet: \(x_1+x_2=m\)
\(\left\{{}\begin{matrix}x_1>x_2\\\left|x_1\right|< \left|x_2\right|\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\x_1^2< x_2^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\\left(x_1-x_2\right)\left(x_1+x_2\right)< 0\end{matrix}\right.\)
\(\Rightarrow x_1+x_2< 0\Rightarrow m< 0\)
Vậy \(m< 0\) thì pt có 2 nghiệm thỏa mãn