K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

Ta có: \(\frac{a^{2013}.b^2.c}{c^{2016}}=\frac{c^{2013}.c^2.c}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)

12 tháng 3 2023

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Leftrightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)

\(\Leftrightarrow2ab=c\left(a+b\right)\)

\(\Leftrightarrow ab+ab=ca+cb\)

\(\Leftrightarrow ab-cb=ca-ab\)

\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

29 tháng 12 2016

Ta có: 
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên) 
=abc.3/(abc)=3 

tk nha bạn

thank you bạn

(^_^)

17 tháng 10 2017

a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)

\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)

b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)

\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)

20 tháng 2 2017

mình cũng đang tìm