Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn có chắc f(x) chia cho x-1 không dư không đấy? Bạn nên đặt lại tính chia đa thức.
2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100
\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100
\(\Leftrightarrow\) 30x = -100 - 5
\(\Leftrightarrow\) x = - 3,5
4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0
\(\Leftrightarrow\) 2x2 + 10x + 21 = 0
---> Phương trình vô nghiệm
Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0
\(\Leftrightarrow\) 10x = - 29
\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)
Vậy phương trình có nghiệm.......
a)x3-7x+6
=x3+0x2-7x+6
=x3-x2+x2-x-6x+6
=(x3-x2)+(x2-x)-(6x-6)
=x2(x-1)+x(x-1)-6(x-1)
=(x-1)(x2+x-6)
=(x-1)(x2-2x+3x-6)
=(x-1)[x(x-2)+3(x-2)]
=(x-1)(x+3)(x-2)
nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs
bạn hỏi từng câu 1 lần thôi cũng đc hỏi 1 lần 17 câu thì thánh nào vô kiên nhẫn trả lời hết đc ^^
a) -5x2+x+15x-3 = \(-5x\left(x-\frac{1}{5}\right)+15\left(x-\frac{1}{5}\right)\)=(3-x)(5x-1)
b)x2+x-6x-6 = x(x+1)-6(x+1) = (x-6)(x+1)
c) x2-x-6x+6 = x(x-1)-6(x-1) = (x-6)(x-1)
\(1.\)
\(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xyz^2\)
\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)
\(=\left(x^2z-xyz\right)\left(x-z\right)\)
\(=xz\left(x-y\right)\left(x-z\right)\)
\(2.\)
\(x^2-\left(a+b\right)xy+aby^2\)
\(=x^2-axy-bxy+aby^2\)
\(=x^2-bxy-axy+aby^2\)
\(=x\left(x-by\right)-ay\left(x-by\right)\)
\(=\left(x-ay\right)\left(x-by\right)\)
\(3.\)
\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=abx^2+b^2xy+a^2xy+aby^2\)
\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)
\(=\left(ax+by\right)\left(bx+ay\right)\)
\(4.\)
\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)
\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)
\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)
\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)
\(5.\)
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)
\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)
\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(6.\)
\(16x^2-40xy+2y^2\)
\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)
\(=\left(4x-5y\right)^2\)
\(7.\)
\(25x^4-10x^2y+y^2\)
\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)
\(=\left(5x^2+y\right)^2\)
\(8.\)
\(-16x^4y^6-24x^5y^5-9x^6y^4\)
\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)
\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)
\(=\left(4x^2y^3+3x^3y^2\right)^2\)
\(9.\)
\(16x^2-4y^2-8x+1\)
\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)
\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)
\(=\left(4x+1\right)^2-\left(2y\right)^2\)
\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)
\(10.\)
\(49x^2-25+42xy+9y^2\)
\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)
\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)
\(=\left(7x+3y\right)^2-5^2\)
\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)
1) Ta có: \(a^2-a-6\)
\(=a^2-3a+2a-6\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a-3\right)\left(a+2\right)\)
2) Ta có: \(a^2-7a+12\)
\(=a^2-3a-4a+12\)
\(=a\left(a-3\right)-4\left(a-3\right)\)
\(=\left(a-3\right)\left(a-4\right)\)
3) Sửa đề: \(a-5\sqrt{a}+6\)
Ta có: \(a-5\sqrt{a}+6\)
\(=a-2\sqrt{a}-3\sqrt{a}+6\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)-3\left(\sqrt{a}-2\right)\)
\(=\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)\)
4) Ta có: \(b+\sqrt{b}-6\)
\(=b+3\sqrt{b}-2\sqrt{b}-6\)
\(=\sqrt{b}\left(\sqrt{b}+3\right)-2\left(\sqrt{b}+3\right)\)
\(=\left(\sqrt{b}+3\right)\left(\sqrt{b}-2\right)\)