Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(x+y\ne0\)
\(x^2-2y^2=xy\)
\(x^2-y^2-y^2-xy=0\)
\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)
\(\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)
Với x - 2y = 0 ta có x = 2y
Thay x = 2y vào A ta có :
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)
=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)
\(=3x^2y-2xy^2-5xy\)
b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)
=\(\dfrac{2y+5y}{x-2}\)
=\(\dfrac{7y}{x-2}\)
c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)
\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)
=\(\dfrac{x\left(y-3x\right)}{3x-y}\)
=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)
=-x
d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)
=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)
=\(\dfrac{1}{6}\)
2.
a. Ta có: x + y = 5 ⇒ x = 5 - y
Thay vào A ta được:
\(A=3\left(5-y\right)^2+3y^2-2y+6\left(5-y\right).y-100\)
\(A=75-30y+3y^2+3y^2-2y+30y-6y^2-100\)
\(A=75-100=-25\)
b. Ta có: x - y = 7 ⇒ x = 7 + y
Thay x = 7 + y vào A ta được:
\(A=\left(7+y\right)\left(7+y+2\right)+y\left(y-2\right)-2\left(7+y\right).y+37\)
\(A=y^2+16y+63+y^2-2y-14y-2y^2+37\)
\(A=100\)
c. Ta có: x + 2y = 5 ⇒ x = 5 - 2y
Thay vào A ta có:
\(A=\left(5-2y\right)^2+4y^2-2\left(5-2y\right)+10+4\left(5-2y\right).y-4y\)
\(A=25-20y+4y^2+4y^2-19+4y+10+20y-8y^2-4y\)
\(A=16\)
a) A = ( 6x + 7)( 2x - 3) - ( 4x + 1)( 3x - \(\dfrac{7}{4}\))
A = 12x2 - 18x + 14x - 21 - ( 12x2 - 7x + 3x - \(\dfrac{7}{4}\))
A = \(\dfrac{-77}{4}\)
Vậy biểu thức trên ko phụ thuộc vào biến
b) x2 - 2y2 = xy
⇔ x2 - xy - 2y2 = 0
⇔ x2 + xy - 2xy - 2y2 = 0
⇔ x( x + y) - 2y( x + y) = 0
⇔ ( x - 2y )( x + y ) = 0
Do : x + y # 0
⇒ x - 2y = 0
⇔ x = 2y
Ta có : P = \(\dfrac{x-y}{x+y}\) ( x + y # 0 ; y # 0)
P = \(\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
KL....
\(\dfrac{3x-2y}{3x+2y}=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\dfrac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\dfrac{1}{4}\)
thay từ đề vào ok
1. a) Ta có: \(x^2-2y^2=xy\) \(\Leftrightarrow\) \(x^2-xy-2y^2=0\)
\(\Leftrightarrow\) \(x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow\) \(x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\) \(\left(x+y\right)\left(x-2y\right)=0\)
Vì \(\left(x+y\right)\ne0\) nên \(x-2y=0\) hay \(x=2y\). Thay \(x=2y\) vào A, ta được:
\(A=\dfrac{\left(2y\right)^2-y^2}{\left(2y\right)^2+y^2}=\dfrac{4y^2-y^2}{4y^2+y^2}=\dfrac{3y^2}{5y^2}=\dfrac{3}{5}\)