Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)
Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)
2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
Suy ra: \(9x^2+6x+24x+16=9x^2\)
\(\Leftrightarrow30x+16=0\)
\(\Leftrightarrow30x=-16\)
hay \(x=-\dfrac{8}{15}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)
A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )
B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )
C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )
D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )
\(\left(2x+3\right)^2+2\left(2x+3\right)\left(x-2\right)+\left(2-x\right)^2=4\)
\(\left(2x+3\right)^2+2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2=4\)
\(\left(2x+3+x-2\right)^2=\left(\pm2\right)^2\)
\(\left(3x+1\right)^2=\left(\pm2\right)^2\)
\(\left[\begin{array}{nghiempt}3x+1=2\\3x+1=-2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}3x=2-1\\3x=-2-1\end{array}\right.\)
\(\left[\begin{array}{nghiempt}3x=1\\3x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=-1\end{array}\right.\)
***
\(\left(x+3\right)\left(3-x\right)=5\)
\(3^2-x^2=5\)
\(x^2=9-5\)
\(x^2=4\)
\(x^2=\left(\pm2\right)^2\)
\(x=\pm2\)
***
\(\left(3x+1\right)\left(9x^2-3x+1\right)=2\)
\(27x^3+3=2\)
\(27x^3=2-3\)
\(\left(3x\right)^3=-1\)
\(3x=-1\)
\(x=-\frac{1}{3}\)
a, \(\left(-x-3\right)^3+\left(x+9\right)\left(x^2+27\right)\)
\(=-x^3-6x^2-9x-3x^2-18x-27+x^3+27x+9x^2+243\)
\(=216\)
=> Gía trị biểu thức ko phụ thuộc vào biến x
b, \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-x^2+x+x^2-x+1-x^3-x^2-x+x^2+x+1\)
\(=2\)
=> Gía trị biểu thức ko phụ thuộc vào biến x
c, tương tự
a: \(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
b: \(=27x^3-8-27x^3+6=-2\)
c: \(=\left(3x+5+2-3x\right)^2=7^2=49\)
ĐKXĐ: x≠2; x≠-2
Ta có: \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{1-6x}{x-2}+\frac{9x+4}{x+2}-\frac{x\left(3x-2\right)+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow-6x^2-11x+2+9x^2-14x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
hay \(x=\frac{-7}{23}\)(tm)
Vậy: \(x=\frac{-7}{23}\)