Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{x+2}{\left|x\right|}\left(đk:\left|x\right|\ne0\right)\)
\(\left|x\right|\ge0\forall x\)
\(MAX_C\Rightarrow MNI_X\)
\(x\ne0\Rightarrow x=1\)
\(\Rightarrow MAX_C=\dfrac{1+2}{\left|1\right|}=3\)
a: \(A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu '=' xảy ra khi x=-1/6
b: \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu '=' xảy ra khi 4/9x-2/15=0
hay x=2/15:4/9=2/15x9/4=18/60=3/10
Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0
vì vậy min của T =0
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)
\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)
\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)
\(\Rightarrow T\ge|43|\)
\(\Rightarrow T\ge43\)
Vậy \(Min_T=43\)
\(D=\dfrac{1}{\left|x-2\right|+3}\)
T a thấy : |x-2|+3 luôn lớn hơn hoặc bằng 3 với mọi x
=> \(\dfrac{1}{\left|x-2\right| +3}\) luôn nhỏ hơn hoặc bằng 1/3
Dấu bằng xảy ra <=> x-2=0 => x=2
Vậy GTLN của biểu thức D là 1/3 tại x=2
Giải:
a) \(A=10-4\left|x-2\right|\)
Vì \(\left|x-2\right|\ge0\)
\(\Leftrightarrow4\left|x-2\right|\ge0\)
\(\Leftrightarrow A=10-4\left|x-2\right|\le10\)
Vậy giá trị lớn nhất của biểu thức A là 10.
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
b) \(B=x-\left|x\right|\)
Vì \(\left|x\right|\ge0\)
\(\Leftrightarrow B=x-\left|x\right|\le0\)
Vậy giá trị lớn nhất của biểu thức B là 0.
\(\Leftrightarrow x=0\)
c) \(C=5-\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow C=5-\left|2x-1\right|\le5\)
Vậy giá trị lớn nhất của biểu thức C là 5.
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
d) \(D=\dfrac{1}{\left|x-2\right|+3}\)
Để biểu thức D đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) phải đạt giá trị bé nhất
Mà \(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow\) giá trị lớn nhất của \(\left|x-2\right|+3\) là 3
\(\Leftrightarrow D=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
Vậy giá trị lớn nhất của biểu thức D là \(\dfrac{1}{3}\).
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Chúc bạn học tốt!
M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021
= |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021
= |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021
= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021
Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)
=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)
Khi (x - 2020)(x2 - 16) = 0
=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)
Khi 2(x - 4)2 = 0
=> x - 4 = 0
=> x = 4 (2)
Từ (1) (2) => x = 4
Vậy Min M = 2021 <=> x = 4
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
a,Ta có:
\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)
b,Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Câu C sai đề
A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra khi: x=7/12
Vậy GTNN của A là 2004 tại x=7/12
Áp dụng BĐT:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|x+8-x\right|\)
\(A\ge8\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\8-x\ge0\Rightarrow x\le8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\8-x< 0\Rightarrow x>8\end{matrix}\right.\end{matrix}\right.\)
Vậy xảy ra khi:
\(0\le x\le8\)
Xài BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)
Khi \(0\le x\le 8\)