K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

= -2 + 30 -3 + 4-6457

= 28 - 3 + 4 -6457

= 29 - 6457

= -6448

1-3+30-3+4-6475

=28-3+4-6457

=25+4-6457

=29-6475

= -6446

16 tháng 11 2020

B=1+1/2*(1+2)*2/2+1/3*(1+3)*3/2+....+1/30*(1+30)*30/2

=1+1+2/2+1+3/2+...+1+30/2

=2+3+4+...+31/2

=(31+2)*30/2 phần 2

=) B=247,5

27 tháng 12 2017

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllldddddd

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeegggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppvvvvvvvpppppppppppppppppppppppppppppppppppppvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccczzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadddddddddddddddddddddddddddddddddddddddddddddddddddddkkkkkkkkkk

28 tháng 12 2017

lozzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

28 tháng 6 2019

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

28 tháng 6 2019

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

31 tháng 7 2019

2)

a) \(2\left|2x-3\right|=1\)

=> \(\left|2x-3\right|=1:2\)

=> \(\left|2x-3\right|=\frac{1}{2}\)

=> \(\left[{}\begin{matrix}2x-3=\frac{1}{2}\\2x-3=-\frac{1}{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}2x=\frac{1}{2}+3=\frac{7}{2}\\2x=\left(-\frac{1}{2}\right)+3=\frac{5}{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\frac{7}{2}:2\\x=\frac{5}{2}:2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{5}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{7}{4};\frac{5}{4}\right\}.\)

b) \(7,5-3\left|5-2x\right|=-4,5\)

=> \(4,5\left|5x-2\right|=-4,5\)

=> \(\left|5x-2\right|=\left(-4,5\right):4,5\)

=> \(\left|5x-2\right|=-1\)

Ta luôn có: \(\left|x\right|>0\forall x\)

=> \(\left|5x-2\right|>-1\)

=> \(\left|5x-2\right|\ne-1\)

Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.

c) \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có: \(\left|3x-4\right|>\) hoặc \(=0\forall x\)

\(\left|3y+5\right|>\) hoặc \(=0\forall y.\)

=> \(\left|3x-4\right|+\left|3y+5\right|=0\)

=> \(\left[{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}3x=0+4=4\\3y=0-5=-5\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=4:3\\y=\left(-5\right):3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{4}{3}\\y=-\frac{5}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{4}{3}\right\};y\in\left\{-\frac{5}{3}\right\}.\)

Chúc bạn học tốt!

Bài 1:

a) \(-15,5.20,8+3,5.9,2-15,5.9,2+3,5.20,8\)

\(=20,8.\left(-15,5+3,5\right)+9,2.\left(-15,5+3,5\right)\)

\(=\left(-15,5+3,5\right).\left(20,8+9,2\right)\)

\(=\left(-12\right).30=-360\)

b) \(\left[\left(-19,95\right)+\left(-45,75\right)\right]+\left[4,95+5,75\right]\)

\(=\left[\left(-19,95\right)+4,95\right]+\left[\left(-45,75\right)+5,75\right]\)

\(=-15+\left(-40\right)=-55\)

Bài 2 :

\(a,2.\left|2x-3\right|=1\)

\(\Leftrightarrow\left|2x-3\right|=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\frac{1}{2}\\2x-3=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{1}{2}+3\\2x=-\frac{1}{2}+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{7}{2}\\2x=\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{5}{4}\end{matrix}\right.\)

Vậy : \(x\in\left\{\frac{7}{4},\frac{5}{4}\right\}\)

\(b,7.5-3\left|5-2x\right|=-4.5\)

\(\Leftrightarrow3.\left|5-2x\right|=7.5-\left(-4.5\right)=12\)

\(\Leftrightarrow\left|5-2x\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)

Vậy : \(x\in\left\{\frac{1}{2},\frac{9}{2}\right\}\)

\(c,\left|3x-4\right|+\left|3y+5\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=-\frac{5}{3}\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(\frac{4}{3},-\frac{5}{3}\right)\)

Bài 3 :

a) \(2^{300}\)\(3^{200}\)

Ta có : \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

mà : \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

Vậy : \(3^{200}>2^{300}\)

b) \(2^{30}+3^{30}+4^{30}\)\(3.2.4^{10}\)

Ta có : \(3.2.4^{10}=6.\left(2^2\right)^{10}=6.2^{20}=3.2^{21}\)

Ta thấy : \(2^{30}>3.2^{21}\Rightarrow2^{30}+3^{30}+4^{30}>3.2^{21}\)

hay : \(2^{30}+3^{30}+4^{30}>3.2.4^{10}\)

Vậy : \(2^{30}+3^{30}+4^{30}>3.2.4^{10}\)

Chúc bạn học tốt !

8 tháng 8 2017

\(VT=1+2+2^3+...+2^{100}\)

\(2VT=2\left(1+2+2^3+...+2^{100}\right)\)

\(2VT=2+2^2+2^3+...+2^{101}\)

\(2VT-VT=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)\(VT=2^{101}-1\)

\(VT=VP\)

8 tháng 8 2017

Thằng phúc chết tiệt, làm giúp ng` ta ko làm hết đuy, còn làm dở =))

Bài 2 :

a) Ta có :

\(3^{30}< 3^{34}\)

\(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

\(27^{10}>25^{10}\Leftrightarrow3^{30}>5^{20}\) (Mà \(3^{30}< 3^{34}\))

\(\Leftrightarrow5^{20}< 3^{34}\)