Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính (9,1 + 10,2 + 11,3 + ...+ 17,9) + 19 = (9,1 + 17,9). 9 : 2 + 19 = 121,5 + 19 = 140,5
Tính Mẫu = \(\frac{40}{42}.\frac{54}{56}.\frac{70}{72}.....\frac{2650}{2652}=\frac{\left(5.8\right).\left(6.9\right).\left(7.10\right)....\left(50.53\right)}{\left(6.7\right).\left(7.8\right).\left(8.9\right)....\left(51.52\right)}=\frac{\left(5.6.7...50\right).\left(8.9.10....53\right)}{\left(6.7.8...51\right).\left(7.8.9...52\right)}=\frac{5.53}{51.7}=\frac{265}{357}\)
Vậy \(P=\frac{140,5}{\frac{265}{357}}.\frac{265}{357}=140,5\)
sua de
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{5}-\frac{1}{15}\)
Tự tính nha :)
\(B=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(B=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(B=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(B=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(B=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
Tự làm
a/ \(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=> \(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=> \(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
=> \(A=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}\)
b/ \(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
=> \(B=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{16}\right)=\frac{2}{3}.\frac{15}{16}=\frac{5}{8}\)
Ta có \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}\div2\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\left(1\right)\)
Có \(\left(1\right)\Leftrightarrow\left(x+1\right).1=1.18\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=18-1\)
\(\Rightarrow x=17\)
1/12+1/6+1/2=(1+2+6)/12=9/12=3/4
1/30+1/20=(3+2)/60=5/6=1/12
1/56+1/42=1/7(1/8+1/6)=1/7(3+4)/24=1/24
8/9-1/72=(8.8-1)/72=63/72=7/8
1/12+1/24=(2+1)/24=3/4
3/4-3/4=0
k cho mik nha!Chúc bn học tốt
9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
=9/10-(1/9*10+1/8*9+...+1/1*2)
=9/10-(1/9-1/10+...+1-1/2)
=9/10-(-1/10+1)=9/10-9/10=0
\(\left(1-\frac{2}{42}\right)\left(1-\frac{2}{56}\right)...\left(1-\frac{2}{2652}\right)\)
= \(\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)
= \(\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)
= \(\frac{5.6.7...50}{6.7.8...51}.\frac{8.9.10...53}{7.8.9...52}\)
= \(\frac{5}{51}.\frac{53}{7}=\frac{265}{357}\)