Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.
\(\frac{4^{1007}.9^{1007}}{3^{2015}.16^{503}}=\frac{4^{1007}.\left(3^2\right)^{1007}}{3^{2015}.\left(4^2\right)^{503}}=\frac{4^{1007}.3^{2014}}{3^{2015}.4^{1006}}=\frac{4}{3}\)
đề nek : cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại O. Kẻ OH vuông góc AC, kẻ OE vuông góc AB. CMR : OD = 0E.
thanks !!
\(\left(0.125\right)^{100}\cdot8^{102}\)
\(=\left(0.125\cdot8\right)^{100}\cdot8^2\)
=64
Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
mà \(\sqrt{99}< \sqrt{100}=10\)
=> a > b
\(\dfrac{4}{9}\) nha
\(\left(0,125\right).\left(-16\right).\left(-\dfrac{8}{9}\right).\left(0,25\right)=\dfrac{1}{8}.\left(-16\right).\left(-\dfrac{8}{9}\right).\dfrac{1}{4}=-2.\left(-\dfrac{2}{9}\right)=\dfrac{4}{9}\)