Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)
Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)
Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)
Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có :
\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)
mà a + b + c = 0 => 2 + 2 - 4 = 0
vậy pt có 2 nghiệm
\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)
a, Thay m =-1 vào (d) ta được : \(y=-2x\)
Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
Với x = 0 => y = 0
Với x = -2 => y = 4
Vậy với m = -1 thì (P) cắt (D) tại O(0;0) ; A(-2;4)
b, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2-2mx-m-1=0\)
\(\Delta'=m^2-\left(-m-1\right)=m^2+m+1>0\forall m\)
Vậy pt luôn có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Ta có : \(\left(x_1+x_2\right)^2-5x_1x_2\)Thay vào ta được
\(4m^2-5\left(-m-1\right)=4m^2+5m+5\)
\(=4m^2+\frac{2.2m.5}{4}+\frac{25}{16}-\frac{25}{16}+5=\left(2m+\frac{5}{4}\right)^2+\frac{55}{16}\ge\frac{55}{16}\)
Dấu ''='' xảy ra khi m = -5/88
Vậy với m = -5/88 thì GTNN của biểu thức trên là 55/16
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)
\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)
\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)
Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)
\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)
\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)
Xét Pt hoành độ.......
\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)
Để ... thì Δ'>0
1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)
Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.
*) Theo Hệ thức Viet ta có:
S=x1+x2=2 và P=x1x2= -m2-2m-2
*)Ta có:
\(\text{x^3_1 +x ^3_2 =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)
⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68
⇔3m2+6m-24=0⇔m=2 và m=-4
KL:
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2=2x-1\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(x^2-mx+m-1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m-2<>0
hay m<>2
Theo đề, ta có: \(x_1+x_2+2\sqrt{x_1x_2}=9\)
\(\Leftrightarrow m+2\sqrt{m-1}=9\)
\(\Leftrightarrow\sqrt{m-1}=\dfrac{9-m}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\m^2-18m+81-4m+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\\left(m-5\right)\left(m-17\right)=0\end{matrix}\right.\)
=>m=5