\(P=-x^2-8x+5\)

\(P=-x^2-8x-16+21\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

e/ \(\left(x-4\right)\sqrt{16-8x+x^2}=\left(x-4\right)\sqrt{\left(x-4\right)^2}=\left(x-4\right)\left(x-4\right)=\left(x-4\right)^2\)

f/ \(\left(2x-5\right)\sqrt{\dfrac{2}{\left(2x-5\right)^2}}=\left(2x-5\right)\cdot\dfrac{1}{\left|2x-5\right|}\cdot\sqrt{2}\)

+) với \(x>\dfrac{5}{2}\) có: \(\left(2x-5\right)\cdot\dfrac{1}{\left|2x-5\right|}\cdot\sqrt{2}=\dfrac{2x-5}{2x-5}\cdot\sqrt{2}=\sqrt{2}\)

+) với \(x< \dfrac{5}{2}\) có:

\(\left(2x-5\right)\cdot\dfrac{1}{\left|2x-5\right|}\cdot\sqrt{2}=\dfrac{2x-5}{-\left(2x-5\right)}\cdot\sqrt{2}=-1\cdot\sqrt{2}=-\sqrt{2}\)

g/ \(\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4-2\cdot2\cdot\sqrt{2-4}+4}=\sqrt{\left(\sqrt{x-4}+2\right)^2}=\sqrt{x-4}+2\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

ĐK:...........

PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)

\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)

\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)

Thay vào PT(2) ta có:

\(x^2+16x-64=128\)

\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)

Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)

Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)

Vậy $(x,y)=(8,\pm 8)$

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

Ta thấy:

\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)

\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)

Do đó:

\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)

Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)

Vậy.......

5 tháng 9 2020

a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)

b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)

c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)

d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)

Thiếu ĐKXĐ : ..............

5 tháng 9 2020

a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)

        \(=27-4\sqrt{3x}\)

b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)

        \(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)

        \(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)

        \(=7\sqrt{2x}+28\)

c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)

        \(=\frac{1}{x-y}.\sqrt{6}\)

d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)

        \(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)

        \(=2a.\sqrt{5}\)

21 tháng 1 2020

\(a,\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)

Phương trình trên tương đương với:

\(\left[\left(x-2\right)^2+7\right]\left[\left(x^2-4\right)^2+5\right]=35\left(1\right)\)

Do: \(\hept{\begin{cases}\left(x-2\right)^2+7\ge7\forall x\\\left(x^2-4\right)^2+5\ge5\forall x\end{cases}}\Rightarrow\left[\left(x+2\right)^2+7\right]\left[\left(x^2+4\right)^2+5\right]\ge35\forall x\)

Nên: \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+7=7\\\left(x^2-4\right)^2+5=5\end{cases}\Leftrightarrow}x=2\)

Vậy ..................................

\(b,\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)

\(Đkxđ:0\le x\le1\) Đặt: \(0< a=\sqrt{x}+\sqrt{1-x}\Rightarrow\frac{a^2-1}{2}=\sqrt{x\left(1-x\right)}\)

\(+)\) Phương trình mới là: \(a+\frac{a^2-1}{2}=1\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)

\(\Leftrightarrow a=\left\{-3;1\right\}\Rightarrow a=1>0\)

\(\sqrt{x}+\sqrt{1-x}=1\)

\(+)\) Nếu \(a=1\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Rightarrow x=\left\{0;1\right\}\left(tm\right)\)

Vậy .............................

3 tháng 12 2017

Ta có \(a,\sqrt{9(x-1)}=21 \)

<=> \(3\sqrt{x-1}=21 \)

<=> \(\sqrt{x-1}=7 \)

<=>\(x-1=49\)

<=>x=50

b, \(\sqrt{4(x-1)^2}-6=0 \)

<=>\(2|x-1|-6=0\)

<=>\(|x-1|=3\)

<=>x=4 hoặc x=-2

c,\(\sqrt{(x-5)^2}=8 \)

<=>|x-5|=8

<=>x=-3 hoặc x=13

d,\(\sqrt{(2x-1)^2}=3 \)

<=>|2x-1|=3

=> x=2 hoặc x=-1

e, \(\sqrt{(2x+3)^2}=3 \)

<=>|2x+3|=3

=>x=0 hoặc x=-3

f, \(\sqrt{x^2-4x+4}=2x-3 \)

<=>\(\sqrt{(x-2)^2}=2x-3 \)

<=>|x-2|=2x-3

Với x-2=2x-3

=>x-1=0

<=>x=1

Với 2-x=2x-3

=>x=\(\frac{5}{3}\)