K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

P=\(X^2+2Y^2-2XY+8X+8Y+2017\)

P=\(\dfrac{4X^2+8Y^2-8XY+32Y+32X+8068}{4}\)

P=\(\dfrac{(\sqrt{3}X)^2-2.\sqrt{3}X.\dfrac{4}{\sqrt{3}}Y+\left(\dfrac{4}{\sqrt{3}}Y\right)^2-\left(\dfrac{4}{\sqrt{3}}Y\right)^2+8Y^2+X^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+\dfrac{8}{3}Y^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+2.X.16+16^2+(\dfrac{2\sqrt{2}}{\sqrt{3}}Y)^2+2.\dfrac{2\sqrt{2}}{\sqrt{3}}Y.4\sqrt{6}+\left(4\sqrt{6}\right)^2+7716}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+\left(X+16\right)^2+\left(\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}\right)^2}{4}+1929\ge1929\forall X\in R\)

DẤU = XẢY RA \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y=0\\X+16=0\\\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}=0\end{matrix}\right.\)

11 tháng 11 2017

x=0

\(x^2+2y^2+2xy-2x-6y+2015\\ =\left(x^2+y^2+1^2+2.x.y-2.x-2.y\right)+\left(y^2-4y+4\right)+2010\\ =\left(x+y-1\right)^2+\left(y-2\right)^2+2010\)

\(\left\{{}\begin{matrix}\left(x+y-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

vậy GTNN của biểu thức là 2010 khi và chỉ khi x=-1 và y=2

17 tháng 2 2018

Xét VT của (1):

\(3VT\)

\(=\sqrt{5x^2+2xy+2y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{2x^2+2xy+5y^2}.\sqrt{2^2+2^2+1^2}\)

\(=\sqrt{\left(x+y\right)^2+4x^2+y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{\left(x+y\right)^2+x^2+4y^2}.\sqrt{2^2+2^2+1^2}\)

\(\ge\left[2\left(x+y\right)+4x+y\right]+\left[2\left(x+y\right)+x+4y\right]=9x+9y\)

\(\Rightarrow VT\ge3x+3y=VT\)

Đẳng thức xảy ra \(\Leftrightarrow...\Leftrightarrow x=y\)

Sau đó thay \(y=x\) vào pt (2) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left(2x^2-\sqrt{3x+1}\right)+\left(x-5-2\sqrt[3]{19x+8}\right)=0\)

\(\Leftrightarrow\dfrac{4x^2-3x-1}{2x^2+\sqrt{3x+1}}+\dfrac{\left(x+5\right)^3-8\left(19x+8\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4x+1\right)}{2x^2+\sqrt{3x+1}}+\dfrac{ \left(x-1\right)\left(x^2+16x-61\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{4x+1}{2x^2+\sqrt{3x+1}}+\dfrac{x^2+16x-61}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}\right]=0\)

\(\Leftrightarrow x=1\Rightarrow y=1\)

13 tháng 4 2017

\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)

Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)

\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)

\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)

Thay vào \(pt\left(2\right)\) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)

\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)

Do \(x;y\ge0\) nên pt trong ngoặc luôn dương

\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt

14 tháng 4 2017

thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^