K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

 ĐK: \(x\ne3\)

a)Theo đề bài,ta cần tìm x sao cho:

 \(\frac{x+1}{x-3}=\frac{-1}{2}\).Quy đồng và khử mẫu,ta được:

\(2\left(x+1\right)=-1\left(x-3\right)\)

\(\Leftrightarrow2x+2=3-x\Leftrightarrow3x=3-2\Leftrightarrow x=\frac{1}{3}\) (TMĐK)

b) Theo đề bài ta cần tìm x sao cho: \(\frac{x+1}{x-3}< 1\Leftrightarrow\frac{x+1}{x-3}< \frac{x-3}{x-3}\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)< \left(x-3\right)^2\)

\(\Leftrightarrow x+1< x-3\) (vô lí)

Do đó không có giá trị x nào thỏa mãn.

2 tháng 12 2018

a) \(P=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)

để \(p=-\frac{1}{2}\Rightarrow\frac{4}{x-3}=-\frac{3}{2}\Rightarrow8=-3.\left(x-3\right)\Rightarrow8=-3x+9\Rightarrow-1=-3x\Rightarrow x=\frac{1}{3}\)

b) để P <1 => \(1+\frac{4}{x-3}< 1\Rightarrow x-3< 0\Rightarrow x< 3\)

p/s: bài b có giá trị t/m mà tth? 

15 tháng 8 2020

Bài 1 :

a) \(ĐKXĐ:x\ne1\)

\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)

\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)

\(\Leftrightarrow A=\frac{x+2}{x-1}\)

b) Thay x = \(\frac{2}{5}\)vào A ta được :

\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)

c) Để \(A=\frac{5}{4}\)

\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)

\(\Leftrightarrow4x+8=5x-5\)

\(\Leftrightarrow x=13\)

d) Để \(A>\frac{1}{2}\)

\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)

\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)

\(\Leftrightarrow2x+4-x+1>0\)

\(\Leftrightarrow x+5>0\)

\(\Leftrightarrow x>-5\)

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)

\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)

\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)

\(\Leftrightarrow A=\frac{2x-1}{x+1}\)

b) Để \(A=1\)

\(\Leftrightarrow\frac{2x-1}{x+1}=1\)

\(\Leftrightarrow2x-1=x+1\)

\(\Leftrightarrow x=2\)

b) Để \(A< 2\)

\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)

\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)

\(\Leftrightarrow2x-1-2x-1< 0\)

\(\Leftrightarrow-2< 0\)(luôn đúng)

Vậy A < 2 <=> mọi x

16 tháng 6 2021

1) A = \(\dfrac{2x-1}{x+3}\) = \(\dfrac{3}{2}\) (=) (2x-1).2 = 3.(x+3)

                          (=) 4x-2 =3x+9

                          (=) 4x-3x = 9+2

                         (=) x = 11 (tm)

2) Để \(\dfrac{A}{B}\)\(^{x^2}\)+5 (=) \(\dfrac{2x-1}{x+3}\)\(\dfrac{2}{x^2-9}\) <  \(x^2\)+5 

                    (=) \(\dfrac{\left(2x-1\right)}{\left(x+3\right)}.\dfrac{\left(x-3\right)\left(x+3\right)}{2}\) \(x^2\)+5

                    (=) \(\dfrac{\left(2x-1\right).\left(x-3\right)}{2}< x^2+5\)

                    (=) \(\dfrac{2x^2-6x-x+3}{2}\) < \(x^2\) +5

                    (=) \(2x^2\)- 7x + 3 < \(2x^2\)+ 10

                    (=)  (\(2x^2\)-\(2x^2\)) - 7x < -3 +10

                    (=) -7x < 7 

                    (=) x > -1

                   

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6