Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vô nghiệm vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0
b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0
vậy x=1; y=-1; z=1
c.tổng 3 số dưng luông lớn hơn bằng ko
vậy x=1/3; y=2; z=1
d tương tự
x-z=0
x+y=0
z+1/4=0
.............
z=-1/4
x=-1/4
y=1/4
Ta có: \(\hept{\begin{cases}\left|2x-1\right|\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left|2x-1\right|+\left(3y+2\right)^2\ge0\forall x;y}\)
Mà \(\left|2x-1\right|+\left(3y+2\right)^2\le0\)
Dấu = xảy ra \(\Rightarrow\hept{\begin{cases}\left|2x-1\right|=0\\\left(3y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\end{cases}}}\)
\(\Rightarrow S=x^2+y^2-xy=\left(\frac{1}{2}\right)^2+\left(\frac{-2}{3}\right)^2-\left(\frac{1}{2}.\frac{-2}{3}\right)\)
\(S=\frac{1}{4}+\frac{4}{9}+\frac{1}{3}\)
\(S=\frac{9}{36}+\frac{16}{36}+\frac{12}{36}\)
\(S=\frac{37}{36}\)
Ta có :
\(\left|2x-1\right|\ge0\)
\(\left(3y+2\right)^2\ge0\)
\(\Rightarrow\)\(\left|2x-1\right|+\left(3y+2\right)^2\ge0\)
Mà \(\left|2x-1\right|+\left(3y+2\right)^2\le0\) ( Giả thiết )
Do đó : \(\left|2x-1\right|+\left(3y+2\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left|2x-1\right|=0\\\left(3y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y+2=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}2x=1\\3y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\end{cases}}}\)
Thay \(x=\frac{1}{2}\) và \(y=\frac{-2}{3}\) vào \(S=x^2+y^2-xy\) ta được :
\(S=\left(\frac{1}{2}\right)^2+\left(\frac{-2}{3}\right)^2-\frac{1}{2}.\frac{-2}{3}\)
\(S=\frac{1}{4}+\frac{4}{9}+\frac{1}{3}\)
\(S=\frac{3}{4}\)
Vậy \(S=\frac{3}{4}\)
Chúc bạn học tốt ~
f(1)=6 ,f(2)=3,f(3)=2
b,y=3=>2
=>y=-2=>x=-3
c điểm ko thuộc đồ thị h/s là điểm
A(-1,-6)=6/-1=-6=>A THUOC H/S TREN
CÂU TIẾP THEO TƯƠNG TỰ
TA CÓ:
\(\hept{\begin{cases}\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|^{2015}\ge0\\\left|y+2015\right|\ge0\Rightarrow\left|y+2015\right|^{2016}\ge0\end{cases}}.\)
Vậy\(\left|x+2016\right|^{2015}+\left|y+2016\right|^{2015}\ge0\)
f(-2).f(3) = (4a-2b+c).(9a+3b+c)
= (4a-2b+c).(13a+b+2c-(4a-2b+c))
Mà 13a+b+2c = 0 theo giả thiết
=> f(-2).f(3) = -[(4a-2b+c)^2]
Có (4a-2b+c)^2 luôn >= 0 => f(-2).f(3) luôn nhỏ hơn hoặc bằng 0