Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-\dfrac{3}{2}=0\)
nên \(x^2=\dfrac{3}{2}\)
hay \(x\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)
b: \(\dfrac{1}{2}x^2+\dfrac{7}{2}x=0\)
\(\Leftrightarrow x^2+7x=0\)
=>x(x+7)=0
=>x=0 hoặc x=-7
c: \(2x\left(x-\dfrac{1}{7}\right)=0\)
=>x(x-1/7)=0
=>x=0 hoặc x=1/7
d: (3x-2)(2x-2/3)=0
=>3x-2=0 hoặc 2x-2/3=0
=>3x=2 hoặc 2x=2/3
=>x=2/3 hoặc x=1/3
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
a,2x-3=x+1/2 b,4x-(x+1/2)=2x+(1/2-5) c,2/3-1/3(x-2/3)-1/2(2x+1)=5
2x-x =1/2+3 4x-x-1/2=2x+1/2-5 d,(x+1/2).(x-3/4)=0
x=7/2 4x-x-2x =1/2-5+1/2 \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
x=-4
e,(2x-1)(3x+1/5)=0
\(\orbr{\begin{cases}2x-1=0\\3x+\frac{1}{5}=0\end{cases}}\orbr{\begin{cases}2x=1\\3x=\frac{1}{5}\end{cases}}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{15}\end{cases}}\)
f, 4x2-2x=0
Các câu mk chưa làm thì bạn cứ chờ để mk suy nghĩ.
Câu a :
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Câu b :
\(2x^2+3=-5x\)
\(\Leftrightarrow2x^2+3+5x=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\2x+3=0\Rightarrow x=-\dfrac{3}{2}\end{matrix}\right.\)
Mấy câu sau khó quá ko bt làm :)
c) |3x-1|=6
\(\Rightarrow\hept{\begin{cases}3x-1=6\\3x-1=-6\end{cases}}\Rightarrow\hept{\begin{cases}3x=7\\3x=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{7}{3}\\x=\frac{-5}{3}\end{cases}}\)
Vậy ...
d) \(x\left(x+\frac{2}{3}\right)=0\)
\(x+\frac{2}{3}=0:x\)
\(x+\frac{2}{3}=0\)
\(x=0-\frac{2}{3}\)
\(x=\frac{-2}{3}\)
\(x-\left(x-\frac{1}{2}\right)=0\)
\(x-\frac{1}{2}=0+x\)
\(x-\frac{1}{2}=x\)
\(\Leftrightarrow\hept{\begin{cases}x=x-\frac{1}{2}\\x-\frac{1}{2}=x\end{cases}}\)
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
Ta có : (x + 1)(x - 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Ta có : \(\left(3x-1\right)\left(-\frac{1}{2}x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\-\frac{1}{2}x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=1\\-\frac{1}{2}x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5.\left(-2\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
có :\(\hept{\begin{cases}\left|x-3\right|\ge0\\\left|2x+2\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-3\right|+\left|2x+2\right|\ge0\)
mà :\(\left|x-3\right|+\left|2x+2\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\2x+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
\(\Rightarrow\)Không tồn tại giá trị x thoả mãn