K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

â)  Xét  : tam giacFBE và tam giác FAE , co

 \(\widehat{E_1}=\widehat{E_2}\)(EF là đường trung trực của AB)

EF là cạnh chung 

BE = AE (EF la duong trung truc cua AB)

Do do : tam giac FBE =tam giac  FAE (c-g-c)

=>FA =FB (hai cạnh tương ứng ) 

b) XÉT : tứ giác EAHF , co :  

\(\widehat{E}=90^o\left(gt\right)\) 

\(\widehat{A}=90^O\left(gt\right)\)

\(\widehat{H}=90^o\left(gt\right)\)

=> \(\widehat{F}=360^O-\left(90^o+90^o+90^o\right)=90^o\)(vì tổng số đo 4 góc của 1 tứ giác là 360\(^o\))

=>FH vuong  EF

c) Vì tứ giác EAHF có 4 góc vuông ( đều = 90 \(^o\))

Nên tu giác EAHF là hình chữ nhật 

=>FH=AE (  HCN luôn có hai cạnh đối diện = nhau ) 

24 tháng 4 2017

Đè lộn rồi nha Dường trung trực của AB cắt AB là sao sửa lại đề đi

2 tháng 5 2018

cho tam giác ABC vuông tại A.đường trung trực của AB cắt AB tại E và BC tại F.

a) chứng minh FA=FB

b) từ F vẽ FH vuông góc với AC.chứng minh FH vuông góc với EF

c) chứng minh FH=AE

18 tháng 4 2016

A B C F E H

5 tháng 4 2016

a) Vì đường trung trực của AB cắt AB tại E và BC tại F nên F thuộc đường trung trực của AB
=> FA=FB ( tính chất của điểm thuộc đường trung trực của 1 đoạn thẳng)
b) Ta có : AB vuông góc AC ; FH vuông góc AC
=> AB// FH 
Vì đường trung trực của AB cắt AB tại E và BC tại F nên FE vuông góc AB
Lại có: AB// FH ; FE vuông góc AB => FH vuông góc FE
c) Xét tam giác AEF và tam giác FHA có:
góc AEF= góc FHA (=90 độ)
AF chung
góc EAF= góc HFA ( 2 góc so le trong của AB// FH bị cắt bởi AF)
=> tam giác AEF = tam giác FHA ( cạnh huyền, góc nhọn)
=> AE= FH ( 2cạnh tương ứng)
d) Ta có: FA= FB (cmt) => tam giác FAB cân tại F => góc B= góc FAB
Xét tam giác ABC vuông tại A nên góc B+góc C= 90 độ
mà góc FAB+ góc FAC= góc BAC= 90 độ
=> góc C= góc FAC ( cùng phụ với 2 góc bằng nhau)=> tam giác FAC cân tại F => FA=FC
Mặt khác FA= FB (cmt) => FC=FB ( =FA) => F là trung điểm BC => FB= BC/2 *
Ta có: BE =EA (Vì đường trung trực của AB cắt AB tại E) ; EA= FH (cmt)=> BE= FH 
Lại có: FH vuông góc FE (cmt) => góc EFH = 90 độ
Xét tam giác BEF và tam giác HFE có:
EF chung
góc BEF =góc EFH (= 90 độ)
BE= FH (cmt)
=> tam giác BEF = tam giác HFE (c.g.c)
=> BF= HE ( 2cạnh tương ứng) **
=> góc BFE = góc HEF ( 2 góc tương ứng)
mà góc BFE và góc HEF nằm ở vị trí so le trong đối với EH và BC bị FE cắt=> EH// BC
Từ * và ** => EH= BC/2

2 tháng 3 2018

bạn ơi có thể vẽ hình cho mik đc ko 

17 tháng 7 2019

a. Xét tam giác BFA cs: FE là đường trung trực đồng thời là đường cao

=> tam giác BFA cân tại F=>BF=FA

9 tháng 8 2019

   

a) Vì EF là đường trung trực của AB nên FA = FB ( Theo định lý về t/c đường trung trực của đoạn thẳng)

b)Vì \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}}\Rightarrow EF//AC\)

Vì \(\hept{\begin{cases}EF//AC\\FH\perp Ac\end{cases}}\Rightarrow EF\perp FH\left(đpcm\right)\)

c) Xét \(\Delta AEH\)và \(\Delta HFE\)có:

           \(\widehat{AHE}=\widehat{HEF}\)(so le trong)

            AF: cạnh chung

            \(\widehat{AEH}=\widehat{HFE}\)(so le trong,\( AE//FH\))

Suy ra \(\Delta AEH=\)\(\Delta HFE\left(c-g-c\right)\)

Suy ra FH = AE ( hai cạnh tương ứng)

d) Chứng minh EH là đường trung bình sau đó suy ra đpcm

25 tháng 4 2021

Bạn đã c/m EA//FH đâu mà <AHE=<HEF

6 tháng 5 2018

A B C E F H

Giải : a) Vì F thuộc đường trung tực của AB => FA = FB  (đpcm)

b) Vì tam giác ABC vuông tại A => AB vuông góc với AC

     Vì EF là đường trung trực của AB => EF vuông góc  với AB => EF // AC

Mà FH vuông góc với AC => FH vuông góc với EF (đpcm)

c)  Vì EF // AC (cmt phần b ) => \(\widehat{FEH}=\widehat{EHA}\)(so le trong ) và \(\widehat{FHE}=\widehat{HEA}\)(so le trong )

Xét tam giác AEH và tam giác FHE có : \(\hept{\begin{cases}\widehat{FHE}=\widehat{HEA}\\ChungEH\\\widehat{FEH}=\widehat{EHA}\end{cases}}\)=> Tam giác EAH = Tam giác HFE (g-c-g)

=> AE = FH ( cạnh tương ứng) (đpcm)

d)

6 tháng 5 2018

Bạn chưa làm câu d ak, nhưng dù sao cũng cảm ơn bn