Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=100^2-99^2+...+2^2-1^2=\left(100+99\right)+\left(98+97\right)+..+\left(2+1\right)\)
\(S=100+99+..+2+1\)
\(S=1+2+..+99+100\)
\(2S=\left(1+100\right)+..+\left(1+100\right)\)
\(S=\frac{100.\left(100+1\right)}{2}=50.101\)
S=(22+42+62+.......+1002)-(12+32+52+......+992)
S=22+42+62+.....+1002-12+32+52+.....+992
S=(22-12)+(42-32)+.........+(1002-992)
Sử dụng công thức a2-b2=(a+b)(a-b)
S=(2+1)(2-1)+(4+3)(4-3)+.......+(100+99)(100-99)
S=3.1+7.1+.......+199.1
s=3+7+........+199
tính S =5050
a)Ta có:S1=5+52+53+…+599+5100
=>5.S1=52+53+54+…+5100+5101
=>5.S1-S1=52+53+54+…+5100+5101-5-52-53-…-599-5100
=>4.S1=5101-5
=>\(S_1=\frac{5^{101}-5}{4}\)
b)S2=2+22+23+…+299+2100
=>2.S2=22+23+24+…+2100+2101
=>2.S2-S2=22+23+24+…+2100+2101-2-22-23-…-299-2100
=>S2=2101-2
2S1=52+53+54+....+5100+5101
2S1-s1=5101-5
S1=5101-5
b) S2=2101-2
S = 12 + 22 + 32 + ........ + 992 + 1002
S = 1 + 2(1+1) + 3(2+1) + ............. + 99(98+1) + 100(99+1)
S = 1 + 1 . 2 + 2 + 2 . 3 + 3 + .......... + 98 . 99 + 99 + 99 . 100 + 100
S = ( 1 . 2 + 2 . 3 + ......... + 99 . 100 ) + ( 1 + 2 + 3 + ............... + 100 )
S = 333300 + 5050
S = 338350
S =12 + 22 + 32 +......+ 992 + 1002
= 1 + 2.(1 + 1) + 3.(1 + 2) + ... + 99.(1 + 98) + 100.(99 + 1)
= 1 + 2.1 + 2 + 3.1 + 3.2 +... + 99.1 + 99.98 + 100.99 + 100.1
= (2.1 + 2.3 + ... + 99.99 ) + (1 + 2 + 3 + ... + 99 + 100)
= 333300 + 5050
= 338350