Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P:\frac{4x-2-16}{2x+1}=\frac{4x^2+4x+1}{x-2}\)
\(\Rightarrow P=\frac{4x^2+4x+1}{x-2}.\frac{4x^2-16}{2x+1}\)
= \(\frac{\left(2x+1\right)^2}{x-2}.\frac{4.\left(x-2\right)\left(x+2\right)}{2x+1}\)
\(\Rightarrow P=4.\left(2x+1\right).\left(x+2\right)\)
\(=4.\left(2x^2+x+4x+2\right)\)
= \(8x^2+40x+8\)
Chúc bạn học tốt !!!
Ta có: \(x^2-\left(\dfrac{4}{9}x^2\right)-16\)
\(=\dfrac{5}{9}x^2-16\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{-16}{1-x^2}\left(x\ne\pm1\right)\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{16}{1-x^2}=0\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{16}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{16}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1-16}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{4x-16}{\left(x-1\right)\left(x+1\right)}=0\)
=> 4x-16=0
<=> 4x=16
<=> x=4 (tmđk)
Vậy x=4
gfvfvfvfvfvfvfv555