K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

Xét tam giác ABC có các đường trung tuyến AM,BD,CE
Gọi G là trọng tâm

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MA = MK

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC (1)

Tương tự, ta có: 2.BD < AB + BC (2)

2.CE < AC + BC (3)

Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> AM + BD + CE < AB + BC + CA

*) Chứng minh: 3/4 (AB + BC + CA) < AM + BD + CE

+) Xét tam giác AGB có: AG + GB > AB

mà AG = 2/3 .AM ; BG = 2/3 .BD (do G là trong tâm tam giác ABC)

=> 2/3 .(AM + BD) > AB

+) Tương tự, ta có: 2/3 (AM + CE) > AC; 2/3 (BD + CE) > BC

=> 2/3 .2. (AM + BD + CE) > AB + BC + CA

<=> 4/3  (AM + BD + CE) > AB + BC + CA

=> AM + BD + CE > 3/4 (AB + BC + CA)

=> ĐPCM

Dạng này hình như lớp 8 mà bạn

28 tháng 12 2015

bạn zô đây cô loan chỉ tường tận luôn nè http://olm.vn/hoi-dap/question/94245.html

27 tháng 6 2017

gọi các cạnh của tam giác lần lượt là a,b,c  ( mm )

Theo đề bài : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a + b + c = 45

Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)

\(\Rightarrow\)a = 9 ; b = 15 ; c = 21

Vậy các cạnh của tam giác đó là 9 ; 15 ; 21

27 tháng 6 2017

gọi độ dài ba cạnh tam giác lần lượt là a,b,c 

=> a : b : c = 3 : 5 : 7 

=> a/3 = b/5 = c/7

Và a + b + c = 45mm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)

=> a = 3.3 = 9

b = 3.5 = 15

c = 3.7 = 21

Vậy độ dài ba cạnh tam giác đó lần lượt là: 9mm, 15mm, 21mm

3 tháng 11 2019

gọi 3 cạnh tam giác lần lượt là a b c

theo gt ta có a / 3 = b / 5 = c / 7

áp dụng dãy tỉ số bằng nhau , ta có a / 3 = b / 5 = c / 7 = a + b + c / 3 + 5 + 7 = 45 / 15 = 3

=> a / 3 = 3    => a = 3 * 3 = 9

     b / 5 = 3          b = 3 * 5 = 15

     c / 7 = 3          c = 3 * 7 = 21

30 tháng 7 2020

a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

Từ đó suy ra x = 11,y = 17,z = 23

b)

a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)

b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)

Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)

c) Tự làm nhé

bài 2:

gọi độ dài mỗi cạnh của tam giác lần lượt là a,b,c tỉ lệ với 5;7;4

theo đề ta có: \(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}\) và a + b + c = 64

áp dụng t/c DTSBN ta có:

\(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}=\frac{a+b+c}{5+7+4}=\frac{64}{16}=4\)

=> \(\hept{\begin{cases}\frac{a}{5}=4\\\frac{b}{7}=4\\\frac{c}{4}=4\end{cases}}\)

=> \(\hept{\begin{cases}a=20\\b=28\\c=16\end{cases}}\)

vậy độ dài mỗi cạnh của tam giác lần lượt là 20cm ; 28cm ; 16cm

chúc bạn học tốt!!! ^^

546456546544575678456457467684594262645654745745756756756856856454564563463

16 tháng 9 2016

bạn ơi còn bài 1