Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình a : Sxq = p.d = \(\dfrac{1}{2}\).20.4.20 = 800(cm2)
Diện tích đáy: Sđ = 202 = 400(cm2)
Diện tích toàn phần của lăng trụ hai là:
Stp = Sxq + Sđ = 800 + 400 = 1200(cm2)
Hình b: Sxq = p.d = \(\dfrac{1}{2}\).7.4.12 = 168(cm2)
Sđ = 72 = 49(cm2)
Stp = Sxq + Sđ = 168 + 49 = 217(cm2)
Hình c: Chiều cao của mặt bên của hình chóp:
\(h=\sqrt{17^2-8^2}=\sqrt{225}=15\left(cm\right)\)
Sxq = p.d = \(\dfrac{1}{2}\).16.4.15 = 480(cm2)
Sđ = 162 = 256(cm2)
Stp = Sxq + Sđ = 480 + 256 = 736(cm2)
t/g DBC có :
ED = EB ( gt )
MB = MC ( gt )
Nên EM là đường trung bình của tam giác DBC
\(\Rightarrow\)EM // DC
T/g AEM có :
DA = DE ( gt )
DI // EM ( cmt , vì EM // DC )
Theo định lý 1 ta có :
AI = IM ( đpcm )
a) Diện tích đáy của hình chóp đều:
S = BC 2 = 6,52 = 42,25 (m2)
Thể tích hình chóp đều:
V = \(\dfrac{1}{3}\). S.h = \(\dfrac{1}{3}\). 42,25 . 12 ≈ 169 (cm3)
b) Các mặt xung quanh là những hình thang cân đáy nhỏ 2cm, đáy lớn 4cm, chiều cao 3,5cm. Nên:
Sxq = \(4.\dfrac{\left(2+4\right).3,5}{2}=42\left(cm^2\right)\) = 42 (cm2)
Con đường hình bình hành EBGF có diện tích:
SEBGF = 50.120 = 6000 (m2)
Đám đất hình chữ nhật ABCD có diện tích:
SABCD = 150.120 = 18000(m2)
Diện tích phần còn lại của đám đất:
S= SABCD - SEBGF = 18000 - 6000 = 12000(m2)
Con đường hình bình hành EBGF có diện tích:
SEBGF = 50.120 = 6000 (m2)
Đám đất hình chữ nhật ABCD có diện tích:
SABCD = 150.120 = 18000(m2)
Diện tích phần còn lại của đám đất:
S= SABCD - SEBGF = 18000 - 6000 = 12000(m2)
Hình 83a, c có tâm đối xứng.
Hình 83a có tâm đối xứng là trung điểm của đoạn thẳng AB,
Hình 83c có tâm đối xứng là tâm của đường tròn.
Hình a: Sxq = p.d = 1212.6.4. 10 = 120 (cm2)
Hình b: Sxq = p.d = 1212.7,5 .4. 9,5 =142,5 (cm2)
Hình c: Độ dài trung đoạn:
d = √172−82172−82 = √289−64289−64 = √225 = 15(cm)
Nên Sxq = p.d = 1212.16.4.15 =480 (cm2)