Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐặtA=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
\(A=1-\frac{1}{64}=\frac{63}{64}\)
Cách 1:
Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
2A = \(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}\)
A = 2A - A = \(1-\frac{1}{128}\)
=> A = \(\frac{127}{128}\)
Cách 2:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
= \(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)\)
= \(1-\frac{1}{128}\)
= \(\frac{127}{128}\)
1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128
Gạch 1/4 với 1/4 , 1/8 với 1/8 , 1/16 với 1/16 , 1/32 với 1/32 , 1/64 với 1/64
Còn 1/2 - 1/128 = 63/128
Đúng thì k cho mình
cái đầu =\(\frac{127}{128}\)vì:
1/2+1/4=3/4 mà 3/4 =1-1/4
1/2+1/4+1/8=7/8 mà 7/8=1-1/8
ta suy ra cách làm: Tổng dãy phân số trên bằng 1 trừ cho phân số cuối
=> Tổng dãy trên =1-1/128= 127/128
tính bằng cách thuận tiện : \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}+\frac{1}{256}\)
Dễ lắm bạn à :
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=2\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow2A-A=2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}+\frac{1}{128}-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Leftrightarrow A=2-\frac{1}{256}=\frac{511}{256}\)
đặt A= 1+1/2+1/4+1/8+...+1/128+1/256
2A=2+1+1/2+1/4+...+1/64+1/128
2A-A=A=2-1/256=511/256
= 1 - 1/2+ 1/2- 1/4 +1/4 - 1/8 +1/8 -1/16 +1/16 -1/32 +1/32 -1/64 +1/64 - 1/128
= 1-1/128
=127/128
\(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)+ \(\frac{1}{64}\)+ \(\frac{1}{128}\)= \(\frac{64}{128}\)+ \(\frac{32}{128}\)+ \(\frac{16}{128}\)+ \(\frac{8}{128}\)+ \(\frac{4}{128}\)+ \(\frac{2}{128}\)+ \(\frac{1}{128}\).
= \(\frac{127}{128}\).
\(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)+ \(\frac{1}{64}\)+ \(\frac{1}{128}\)
= \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)+ \(\frac{1}{32}\)- \(\frac{1}{64}\)+ \(\frac{1}{64}\)- \(\frac{1}{128}\)
= \(1\)- \(\frac{1}{128}\)
= \(\frac{127}{128}\)
Theo đề bài ta có :
\(2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Leftrightarrow2B-B=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(\Leftrightarrow B=1-\frac{1}{256}\)
\(\Leftrightarrow B=\frac{255}{256}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..+\frac{1}{256}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^8}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^7}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow B=1-\frac{1}{2^8}\)
\(1\frac{1}{2}x1\frac{1}{3}:1\frac{1}{4}:1\frac{1}{5}\)
\(=\frac{3}{2}x\frac{4}{3}:\frac{5}{4}:\frac{6}{5}\)
\(=\frac{3}{2}x\frac{4}{3}x\frac{4}{5}x\frac{5}{6}\)
\(=\frac{4x4}{2x6}=\frac{2x2x4}{2x2x3}=\frac{4}{3}\)
\(1\frac{1}{2}\times1\frac{1}{3}\div1\frac{1}{4}\div1\frac{1}{5}=\frac{3}{2}\times\frac{4}{3}\div\frac{5}{4}\div\frac{6}{5}=\frac{3}{2}\times\frac{4}{3}\times\frac{4}{5}\times\frac{5}{6}\)
\(=\frac{3\times4\times4\times5}{2\times3\times5\times6}=\frac{4}{3}\)
Đặt :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow\)\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{2^7}\)
Vậy \(A=1-\frac{1}{2^7}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)