K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}-\frac{y}{\left(1-y\right)\left(1+y+y^2\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y\left(y^2+y+1\right)}{\left(y+1\right)^2\left(y^2+y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y+1\right)^2}\right):\frac{1}{\left(y-1\right)\left(x+1\right)}\)

\(=\left(\frac{\left(y+1\right)^2+y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)^2}\right).\frac{\left(y-1\right)\left(y+1\right)}{1}=\frac{y^2+2y+1+y^2-y}{y+1}=\frac{2y^2+y+1}{y+1}\)

b, Thay y = 1/2 ta có : 

\(\frac{2.\left(\frac{1}{2}\right)^2+\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{\frac{1}{2}+\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}+\frac{2}{2}}=\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{12}\)

5 tháng 10 2021

a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)

\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)

\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)

\(\Rightarrow48x-46=0\)

\(\Rightarrow x=\frac{23}{24}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow8x+17=16\)

\(\Rightarrow8x=-1\)

\(\Rightarrow x=\frac{-1}{8}\)

5 tháng 10 2021

c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)

\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)

\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)

\(\Rightarrow24y+25=49\)

\(\Rightarrow24y=24\)

\(\Rightarrow y=1\)

d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)

\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)

\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)

\(\Rightarrow3y^2+12y+13=28\)

\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)

\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)

\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

2 tháng 11 2018

help me

2 tháng 11 2018

1.Tính:

[(x+y)5-2(x+y)4 ] : [-5(x+y)3]

= -5(x+y)2 + \(\dfrac{2}{5}\)(x+y)

2.Tìm a để đa thức 24x3 -14x2 +23x+2a+4 \(⋮\) 4x+1

24x3 -14x2 +23x+2a+4 \(|^{4x+1}_{6x^2-5x+7}\)

24x3 +6x2

\(\overline{-20x^2}+23x+2a+4\)

-20x2 -5x

\(\overline{28x+2a+4}\)

28x +7

\(\overline{2a+11}\)

Để 24x3 -14x2 +23x+2a+4 \(⋮\) 4x+1 thì 2a+11=0 \(\Leftrightarrow\) a= \(\dfrac{11}{2}\)

3. Phân tích đa thức thành NT :

a, 12x3 -12x2 +3x = 3x(4x2 -4x+1) = 3x (2x+1)

b, x2.(x-1)+9(1-x) = x2 (x-1) -9(x-1) = (x-1)(x2-9)

=(x-1)(x-3)(x+3)

c,8(x-y)-x3 (x-y) = (x-y)(8-x3)= (x-y)(2-x)(4+2x+x2)

17 tháng 10 2017

a) 

 \(y^2+1-y^2-1+y-9=0\)0

y-9 = 0

vậy y = 9

b)

\(y^3+8-y^3+2y\)= 15

8 + 2y = 15

2y = 7 

vậy y = 7/2 = 3,5

cho mình nhé

17 tháng 10 2017

a)

Ta có \(y^2+1-\left(y+1\right)\left(y-1\right)+y-9=0\)

\(\Leftrightarrow y^2+1-y^2+1+y-9=0\)

\(\Leftrightarrow y-7=0\)

\(\Leftrightarrow y=7\)

Vậy y=7

b)

Ta có \(\left(y+2\right)\left(y^2-2y+4\right)-y\left(y^2+2\right)=15\)

\(\Leftrightarrow y^3+8-y^3-2y=15\)

\(\Leftrightarrow8-2y=15\)

\(\Leftrightarrow2y=-7\)\(\Leftrightarrow y=-\frac{7}{2}\)

Vậy \(y=-\frac{7}{2}\)

14 tháng 6 2016

a)\(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)=y^4-81-y^4+4=-77\)

b) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=b\left(2a-2c+b\right)-2ab+2bc=b^2\)

Sửa lại đề bạn nhé! 

c) \(P\left(3-1\right)=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2P=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2P=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

...

\(2P=3^{64}-1\Rightarrow P=\frac{3^{64}-1}{2}\)

14 tháng 6 2016

a,

(y-3)(y+3)-(y2+2)(y2-2)

=y2-9-y4-4

=y2-y4-9-4

=y2-y4-13

b,

đề ghi thiếu chỗ mũ rồi

c,

(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

cái này mk k bt nữa

1 tháng 5 2021

a) ĐKXĐ : \(y\ne\pm1\)

 \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right)\div\frac{1}{y^2-1}\)

\(=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}\div\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)

\(=2y+1\)

Vậy \(N=2y+1\)khi \(y\ne\pm1\)

b) Với \(y=\frac{1}{2}\); phương trình N trở thành :

\(N=2.\frac{1}{2}+1=2\)

Vậy N=2 khi \(y=\frac{1}{2}\)

c) Để N luôn dương

\(\Leftrightarrow2y+1>0\)

\(\Leftrightarrow2y>-1\)

\(\Leftrightarrow y>\frac{-1}{2}\)

Kết hợp ĐKXĐ ta có : \(y>\frac{-1}{2};y\ne\pm1\)

Vậy N luôn dương khi \(y>\frac{-1}{2};y\ne\pm1\)
 

Bài 2: 

a: \(A=-7x^6y^{3-n}+\dfrac{5}{2}x^{2n-3}y^{4-n}\)

Để đây là phép chia hết thì 3-n>=0; 4-n>=0; 2n-3>=0

=>3/2<=n<=3

b: \(B=\dfrac{-5}{3}x^{4-n}y+x^{3-n}y^{2-n}\)

Để đây là phép chia hết thì 4-n>=0; 3-n>=0; 2-n>=0

=>n<=2