Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có gì khó!!!!
\(\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(=2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}6\le x\le2022-and-x=10\\y=2014\\z=2015\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
a)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Số hạng thứ nhất công(+) số hạng thứ 3 lớn hơn hoạc bằng VP đẳng thức khi 6<=x<=2022
Vậy các số hạng cò lại phải bằng không
=>
Số hạng 2=>x=0
Số hạng 4=>y=2015
Số hạng cuối=>z=2017
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)
\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)
Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)
Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)
2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)