K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Bài này dễ ý mà, vô cùng đơn giản..........

Ta có:

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}.\)

\(\dfrac{2}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)

\(1\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}.\)

\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{x}-\dfrac{1}{x}\right)+\left(1-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)

\(0+0+...+0+\left(1-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)

\(1-\dfrac{1}{x+2}=\dfrac{2015}{2016}.\)

\(\dfrac{1}{x+2}=1-\dfrac{2015}{2016}.\)

\(\dfrac{1}{x+2}=\dfrac{1}{2016}.\)

\(\Rightarrow x+2=2016.\)

\(\Rightarrow x=2016-2=2014.\)

Vậy \(x=2014.\)

~ Học tốt nha bn!!! ~

Bài mik đúng thì nhớ tick mik nha!!!

21 tháng 4 2017

thank you bạn

21 tháng 3 2016

<=>2-2/3+2/3-2/5........+2n-2n+2<2015/2016

<=>2-2n+2<2015/2016

=>n+2=1/2016

=>n=2014

21 tháng 3 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{n\left(n+2\right)}\)<\(\frac{2015}{2016}\)

VT=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{5}-\frac{1}{n+2}\)=\(1-\frac{1}{n+2}\)

Ta có:\(1-\frac{1}{n+2}=\frac{2015}{2016}\Rightarrow\)\(\frac{1}{n+2}=1-\frac{2015}{2016}\)

\(\Rightarrow\)\(\frac{1}{n+2}=\frac{1}{2016}=n+2=2016\)

\(\Rightarrow\)\(n=2014\)

Vậy\(n=2014\)

18 tháng 3 2016

Gọi \(A=\frac{1005}{2011}\)

A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)

A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2

A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2

A . 2=1/1-1/x+2

Suy gia:1005/2011 . 2=1/1-1/x+2

             2010/2011    =1/1-1/x+2

             1/x+2           =1/1-2010/2011

              1/x+2          =1/2011

Suy gia:x+2=2011

            x    =2011-2

            x    =2009

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

26 tháng 6 2017

Bài 2

a) Ta có

S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

\(\dfrac{1}{13}< \dfrac{1}{12}\)

\(\dfrac{1}{14}< \dfrac{1}{12}\)

\(\dfrac{1}{15}< \dfrac{1}{12}\)

=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)

Lại có

\(\dfrac{1}{61}< \dfrac{1}{60}\)

\(\dfrac{1}{62}< \dfrac{1}{60}\)

\(\dfrac{1}{63}< \dfrac{1}{60}\)

=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)

=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)

=> đpcm

26 tháng 6 2017

Ta có

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)

\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)

\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)

\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)

\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)

2016 = x + 2

x = 2016 - 2

x = 2014

Vậy x = 2014 là giá trị cần tìm

6 tháng 6 2016

\(=2x+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{11}=-\frac{2016}{2017}\)

\(=2x+\frac{1}{3}-\frac{1}{11}=-\frac{2016}{2017}\)

\(2x+\frac{8}{33}=-\frac{2016}{2017}\)

\(2x=\frac{-2016}{2017}-\frac{8}{33}\)

\(2x=\frac{-2024}{2017}\)

\(x=-\frac{1012}{2017}\)

6 tháng 6 2016

\(2x+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{-2016}{2017}\)

\(2x+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}=\frac{-2016}{2017}\)

\(2x+\frac{1}{3}-\frac{1}{11}=\frac{-2016}{2017}\)

\(2x+\frac{8}{33}=\frac{-2016}{2017}\)

\(2x=\frac{-2016}{2017}-\frac{8}{33}\)

Số dư dài quá. Đến đây bạn tự làm tiếp nhé

20 tháng 3 2017

a) pt => 2x-x=-25+5(chuyển vế đổi dấu) =>x=-20

b)pt=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\)=\(\frac{2016}{2017}\)

      =>\(1-\frac{1}{2x+1}=\frac{2016}{2017}\)=>\(\frac{2x}{2x+1}=\frac{2016}{2017}\). Nhân chéo => x=1008

18 tháng 7 2018

Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x\left(x+2\right)}=19\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+2}=19\)

\(\Leftrightarrow1-\frac{1}{x+2}=19\)

\(\Leftrightarrow\frac{x+2}{x+2}-\frac{1}{x+2}=19\)

\(\Leftrightarrow\frac{x+1}{x+2}=19\)

<=> 19(x + 2) =  x + 1 

<=> 19x + 38 = x + 1

=> 19x - x = 1 - 38

=> 19x = -37

=> x = \(-\frac{37}{19}\)

18 tháng 7 2018

ĐK:  \(x\ne0;x\ne2\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=19\)

\(\Leftrightarrow\)\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=19\)

\(\Leftrightarrow\)\(1-\frac{1}{x+2}=19\)

\(\Leftrightarrow\)\(\frac{1}{x+2}=-18\)

\(\Rightarrow\)\(x+2=-\frac{1}{18}\)

\(\Leftrightarrow\)\(x=-2\frac{1}{18}\)