K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2022

Đk: \(x\ge2+\sqrt{3}\)

Ta có: \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)

<=> \(x-4+\sqrt{x^2-4x+1}-1-3\left(\sqrt{x}-2\right)=0\)

<=> \(x-4+\dfrac{x\left(x-4\right)}{\sqrt{x^2-4x+1}+1}-\dfrac{3\left(x-4\right)}{\sqrt{x}+2}=0\)

<=> \(\left(x-4\right).\left(1+\dfrac{x}{\sqrt{x^2-4x+1}+1}-\dfrac{3}{\sqrt{x}+2}\right)=0\)

<=> \(x=4\)

Vì \(x\ge2+\sqrt{3}\) -> \(\dfrac{x}{\sqrt{x^2-4x+1}}>0\)\(-\dfrac{3}{\sqrt{x}+2}>-1\)

=> \(1+\dfrac{x}{\sqrt{x^2-4x+1}}-\dfrac{3}{\sqrt{x}+2}>0\)

22 tháng 9 2019

1.Ta co:

\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)

\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)

\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)

Dau '=' xay ra khi \(x=-1\)

Vay \(A_{min}=3\)khi \(x=-1\)

22 tháng 9 2019

2c.

\(DK:x\ge\frac{1}{2}\)

\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)

\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)

Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vay PT vo nghiem

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

25 tháng 7 2020

\(\sqrt{4\left(1-x\right)^2}-6=0\) 

<=> \(\left|2\left(1-x\right)\right|=6\)

TH1: x \(\ge\)1 Khi đó pt trở thành:

\(2\left(x-1\right)=6\)

<=> x - 1 = 3

<=> x = 4 (tm)

TH2: x < 1, khi đó pt trở thành:

2(1 - x) = 6

<=> 1 - x = 3

<=> x = -2(tm)

vậy S= {4; -2}

25 tháng 7 2020

Trả lời:

\(\sqrt{4\left(1-x\right)^2}-6=0\)

\(\Leftrightarrow2.\left|1-x\right|=6\)

\(\Leftrightarrow\left|1-x\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)

Vậy \(x=\left\{-2,4\right\}\)

\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)

\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)

Vậy \(x=\left\{1,-1\right\}\)

\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)

4 tháng 7 2020

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

29 tháng 6 2015

a, \(\sqrt{1-4x+4x^2}=1\Leftrightarrow\sqrt{\left(1-2x\right)^2}=1\Leftrightarrow l1-2xl=1\)  

(+) l 1 - 2x l = 1 - 2x khi 1 - 2 x >= 0 => x < -1/2 

ta có 1 - 2x = 1 => -2x = 0 => x = 0  ( loại)

(+) l 1 - 2x l = 2 x - 1 .........

Ta có 2x - 1 = 1 

            2x  = 2 

            x = 1 (  TM) 

Vậy x = 1 

c, \(\sqrt{x-3+2\sqrt{x-3}+1}+\sqrt{x-3+2.\sqrt{x-3}.3+9}=4\)

Mình nhường cho triệu dang gải tiếp

23 tháng 9 2016

a) \(A=5+\sqrt{-4x^2-4x}\) 

\(A==5+\sqrt{-4x\left(x+1\right)}\)

Có: \(-4x\left(x+1\right)\le0\)

\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(B=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)

Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)

Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)

Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)

Vậy: \(Max_B=2\) tại \(x=3\)

24 tháng 9 2016

Bài 2:

a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge x-1+0+3-x=2\)

Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)

Vậy MinA=2 khi x=2

1 tháng 8 2020

a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

S = (3;6)

b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)

c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)

d) đkxđ : x khác -1

\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)

e) đk x >= 3/2

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm

f) đk x >= -3/4

\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm

28 tháng 9 2019

2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(-\sqrt{x+2}=-9\)

\(x+2=81\)

\(\Rightarrow x=79\)

3) \(\sqrt{x^2-4x+4}=7x-1\)

\(\sqrt{x^2-2.x.2+2^2}=7x-1\)

\(\sqrt{\left(x-2\right)^2}=7x-1\)

\(x-2=7x-1\)

\(-2=7x-1-x\)

\(-2+1=7x-x\)

\(-1=6x\)

\(-\frac{1}{6}=x\)

\(\Rightarrow x=-\frac{1}{6}\)

2 tháng 9 2019

\(2,\)

\(a,\sqrt{x^2-4x+3}=3\)

\(\Rightarrow x^2-4x+3=9\)

\(\Rightarrow x^2-4x-6=0\)

\(\Rightarrow\left(x-2\right)^2=10\)

\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)

2 tháng 9 2019

\(a,x\ge0;x\ne1;B,x\ge0;x\ne9;C,x>0;x\ne4\)

\(d,x\ge0;x\ne25\)