K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)

25 tháng 6 2018

a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)

xog xét 2 TH

b, bình phương 

2

GTLN : 2 dấu = xra \(2\le x\le4\)

27 tháng 6 2018

Hà Thị Thế pạn làm ra lun giúp mjk dx k ạ

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

12 tháng 12 2016

\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)

\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)

\(=\left|x-1\right|-\left|x+1\right|\)

+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)

+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)

+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)

\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)

Ta thấy:

  • Với \(x\ge1\) ta tìm được \(Min_y=-2\)
  • Với \(x< -1\) ta tìm được \(Max_y=2\)

 

 

 

9 tháng 10 2018

Theo BĐT cô-si ta có

\(\sqrt{x-1}=1\cdot\sqrt{x-1}\le\frac{1+x-1}{2}=\frac{x}{2}\)

\(\sqrt{y-2}=1\cdot\sqrt{y-2}\le\frac{1+y-2}{2}=\frac{y-1}{2}\)

\(\Rightarrow\sqrt{x-1}+\sqrt{y-2}\le\frac{x}{2}+\frac{y-1}{2}=\frac{x+y-1}{2}=\frac{3}{2}\)

NM
28 tháng 7 2021

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

29 tháng 7 2021

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)

14 tháng 8 2020

áp dụng bunhiacopski ta có: 

P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)

đặt (...) =A

ta có: 1/1+x^2=< 1/2x

tt với 2 cái kia

=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........

đoạn sau chj chịu

^^ sorry

14 tháng 8 2020

Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!

gt <=>    \(\frac{x+y+z}{xyz}=1\)

<=>    \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt:   \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

=>    \(ab+bc+ca=1\)

VÀ:    \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

THAY VÀO P TA ĐƯỢC:    

\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)

=>     \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)

=>     \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)

Thay     \(1=ab+bc+ca\)    vào P ta sẽ được:

=>      \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

=>     \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

=>      \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=>      \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)

=>     \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)

=>     \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)

=>     \(2P\le1+1+1=3\)

=>     \(P\le\frac{3}{2}\)

DẤU "=" XẢY RA <=>    \(a=b=c\)    . MÀ     \(ab+bc+ca=1\)

=>     \(a=b=c=\sqrt{\frac{1}{3}}\)

=>     \(x=y=z=\sqrt{3}\)

VẬY P MAX \(=\frac{3}{2}\)      <=>      \(x=y=z=\sqrt{3}\)