Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a) \(A=x^2-6x+15\)
\(A=x^2+6x+9+6\)
\(A=\left(x+3\right)^2+6\ge6\)
vậy Min A=6\(\Leftrightarrow\)x=-3
b) Min B=4x
c) \(C=2x^2-6x+4\)
d) \(D=x^2+x+1\)
\(=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy Min D\(=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)
Ta có : A = x2 - 6x + 15
=> A = x2 - 2.x.3 + 9 + 6
=> A = x2 - 2.x.3 + 32 + 6
=> A = (x - 3)2 + 6
Mà : (x - 3)2 \(\ge0\forall x\in R\)
Nên : (x - 3)2 + 6 \(\ge6\forall x\in R\)
Vậy GTNN của A là 6 khi x = 3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
MIN P = 4 khi \(x-1=0=>x=1\)
b) \(2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=\frac{-18}{4}+2\left(x^2-\frac{3}{2}\right)^2\le\frac{-18}{4}\)
MIN Q = \(\frac{-18}{4}\)khi \(x^2-\frac{3}{2}=0\)
\(=>x^2=\frac{3}{2}\)
\(=>\orbr{\begin{cases}x=-\sqrt{\frac{3}{2}}\\x=\sqrt{\frac{3}{2}}\end{cases}}\)
Ủng hộ nha
a) P=x^2-2x+5
=x2-2x+1+4
=(x-1)2+4
Ta thấy;\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = <=>x-1=0 =>x=1
Vậy...
Q = 2x2 - 6x
= 2 ( x2 - 3x + 9/4 ) - 9/2
= 2 ( x - 3/2)2 - 9/2
+) Ta có: 2( x - 3/2)2 \(\ge\) 0
=> 2(x - 3/2)2 - 9/2 \(\ge\) -9/2
Vậy GTNN của Q = -9/2 khi x = 3/2
^^
a) \(A=x^2-2x+7=x^2-2x+1+6=\left(x-1\right)^2+6\)
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow A=\left(x-1\right)^2+6\ge6\)
Dấu "=" xảy ra <=> x-1 = 0 <=> x = 1
Vậy Amin = 6 khi và chỉ khi x = 1
b) Ta có: \(B=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Bmin = -9/2 khi và chỉ khi x = 3/2
c) \(C=5+4x-x^2=-\left(x^2-4x-5\right)=-\left(x^2-4x+4\right)+9\)
\(=-\left(x-2\right)^2+9=9-\left(x-2\right)^2\le9\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy Cmax = 9 khi và chỉ khi x = 0
d) Tương tự
\(B=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)
\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)
\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)
\(=\left(2x-5-2\right)^2-4\)
\(=\left(2x-7\right)^2-4\ge-4\)
Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)
(2x-5)^2 -4(2x-5)=(2x-5)^2 -4(2x-5)+4-4=(2x-7)^2 -4>=-4 suy ra C đạt gtnn là -4