K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

10 tháng 8 2018

\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)

10 tháng 8 2018

Câu a : Ta có :

\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)

Câu b : Ta có :

\(C=\left(2n+1\right)^2-1=\left(2n+1-1\right)\left(2n+1+1\right)=2n\left(2n+2\right)=4n^2+4n=8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\)

Do có thừa số là 8 nên \(8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\) luôn chia hết cho 8

\(\Rightarrow C=\left(2n+1\right)^2-1\) chia hết cho 8 ( đpcm )

29 tháng 12 2018

1, a, để A có giá trị xác định <=> 5x-5y \(\ne\) 0 => 5x\(\ne\)5y =>x\(\ne\)y b, A=\(\dfrac{x^2-y^2}{5x-5y}=\dfrac{\left(x+y\right)\left(x-y\right)}{5\left(x-y\right)}=\dfrac{\left(x+y\right)}{5}\) 2, a,

A=\(\dfrac{2x^3+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\) =\(\dfrac{2x\left(x+2\right)}{x\left(x^2-4\right)}+\dfrac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)}-\dfrac{2}{x-2}\) =\(\dfrac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x}-\dfrac{2}{x-2}\) =\(\dfrac{2x}{x\left(x-2\right)}+\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}-\dfrac{2x}{x\left(x-2\right)}\) =\(\dfrac{2x+\left(x-2\right)^2-2x}{x\left(x-2\right)}\) =\(\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}\) =\(\dfrac{\left(x-2\right)}{x}\)

b, thay x=4 vào A ta có : A=\(\dfrac{4-2}{4}\) =\(\dfrac{2}{4}=\dfrac{1}{2}\)

c, để A \(\in\) Z => (x-2)\(⋮\)x mà x\(⋮\)x =>-2\(⋮\)x => x\(\in\){ \(\pm1;\pm2\)} mà x\(\ne\)\(\pm2\) => x\(\in\left\{-1,+1\right\}\)

Bài 3 : a, Ta có B= 2.(-1)2+-(-1)+1 =2+1+1=4 b, Ta có A=2x3 +5x2 -2x +a =(2x3 -x2 +x )+(6x2-3x +3) +(a-3) \(⋮\) 2x2-x+1 => x(2x2-x+1)+3(2x2-x+1) +(a-3)\(⋮\) 2x2-x+1
=>a-3=0 (vì a-3 là số dư )=>a-3 Vậy a=3 thì A\(⋮\)B c,B=1 => 2x2 -x+1=1 =>x(2x-1)=0 => x=0 hoặc 2x-1 =0 => x=0 hoặc x=\(\dfrac{1}{2}\)

20 tháng 10 2015

1/ phân tích thành nhân tử ;

= C2-( a +b )2=( c-a -b ) . ( c+a +b )

 

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

5 tháng 9 2020

Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...

a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)

\(=5x^3-4x-7\)

\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)

\(=13x^3-x^2+4x-5\)

b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)

c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

  \(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)

d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)