Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>x=12; y2=1; z3=-8
=>x=12; \(y\in\left\{1;-1\right\}\); z=-2
b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)
=>x/5=y/-3=z/-17=t/9=-2
=>x=-10; y=6; z=34; t=-18
a,(x+17).(25-x)=0
<=>x+17=0 hoặc 25-x=0
<=>x=-17 hoặc x=25
Vậy x=-17 hoặc x=25
b,5.(3-x)+2.(x-7)=-17
15-5x+2x-14=-17
1-3x=-17
3x=18
x=6
Vậy x=6.
c,(x-5).(x^2-9)=0
(x-5).(x.x-9)=0
=>x-5=0 hoặc x.x-9=0
=>x=5 hoặc x=3
Vậy x=5 hoặc x=3.
Tớ chỉ biết làm có zậy thôi có zì thì cậu tự nghĩ tiếp nhé!!!Còn đúng hay sai thì mình không biết đâu nhé!!!hihi!!!
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
Mình chỉ biết làm câu b thôi. Xl nhé!
b/ \(2^x=32^5.64^6\)
\(\Rightarrow2^x=\left(2^5\right)^5.\left(2^6\right)^6\)
\(\Rightarrow2^x=2^{25}.2^{36}\)
\(\Rightarrow2^x=2^{25+36}\)
\(\Rightarrow2^x=2^{61}\)
\(\Rightarrow x=61\)
Vậy \(x=61\)
\(\overline{42x}\) + 6y+2y =428
\(\overline{42x}\) + y.(6+2)=428
\(\overline{42x}\) + y.8 =428
y.8 =428-\(\overline{42x}\)
Để \(\overline{42x}\) chia hết cho 10 thì x phải bằng 0.
y.8 = 8
y =8:8
y =1
Vậy \(\overline{42x}\) = 420; y bằng 1.
Mình chỉ làm bài theo cách nhìn của mình. bạn nên ghi để rõ ràng hơn
Gọi thứ tự các ô trong dãy lần lượt là :
01;02;03;04;05;06;07 thì ta có:
01=04=07; 02=05 =176 ; 03=06=324;
Mà 01+02+03=1000 hay 01+176+324=1000
=>01+500=1000 => 01 = 500;
Số thích hợp để điền vào ô thứ nhất là 500...
viết dạng tổng quát của 1 số tự nhiên :
a, có 2 chữ số là: ab
(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10)
b, có 3 chữ số là: abc
(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10) và (b \(\in\) N/ b < 10).
Trong phần b, mink sửa:
.........và (c \(\in\) N/ c <10)
Từ đề bài:
=>x2+y2+z2=x+y+z-3
<=>x2-x+\(\dfrac{1}{4}+y^2-y+\dfrac{1}{4}+z^2-z+\dfrac{1}{4}+\dfrac{9}{4}\)=0
<=>\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2+\dfrac{9}{4}=0\)(1)
Do \(\left(x-\dfrac{1}{2}\right)^2\)\(\ge0\forall x\in R\)
\(\left(y-\dfrac{1}{2}\right)^2\)\(\ge0\forall y\in R\)
\(\left(z-\dfrac{1}{2}\right)^2\)\(\ge0\forall z\in R\)
=>\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2\)\(\ge0\forall x;y;z\in R\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)\(\ge\dfrac{9}{4}>0\forall x;y;z\in R\)
=>(1) vô nghiệm
Vậy không tồn tại x,y,z thỏa mãn đề bài
a) Ta có: (x-3)(y+2)=5
nên (x-3) và (y+2) là ước của 5
\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)
b) Ta có: (x-2)(y+1)=5
nên x-2 và y+1 là các ước của 5
\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)