K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

a) Để \(P_{\left(x\right)}\in z\)

\(\Rightarrow\frac{2}{4-x}\in z\)

\(\Rightarrow2⋮4-x\Rightarrow4-x\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 4-x = 2 => x=2 (TM)

      4-x  = -2 => x = 6 (TM)

      4-x  = 1 => x=3 (TM) 

     4 -x  = -1 => x = 5 (TM)

KL: x = ....

b) ta có: \(\frac{3x+9}{x-4}=\frac{3x-12+21}{x-4}=\frac{3.\left(x-4\right)+21}{x-4}=\frac{3.\left(x-4\right)}{x-4}+\frac{21}{x-4}=3+\frac{21}{x-4}\)

để A(x) nhận giá trị nguyên

\(\Rightarrow\frac{21}{x-4}\in z\)

\(\Rightarrow21⋮x-4\Rightarrow x-4\inƯ_{\left(21\right)}=\left(1;-1;3;-3;7;-7\right)\)

nếu x -4 = 1 => x= 5 (TM)

     x -4  = -1 => x = 3 ( TM)

  x -4    = 3 => x = 4 (TM)

  x -4   = -3 => x = 1 (TM)

   x  - 4 = 7 => x=11 (TM)

  x - 4   = -7 => x = -3 (TM)

KL: x= ....

c) ta có: \(\frac{6x+5}{2x+1}=\frac{6x+3+2}{2x+1}=\frac{3.\left(2x+1\right)+2}{2x+1}=\frac{3.\left(2x+1\right)}{2x+1}+\frac{2}{2x+1}\)

Để B(x) nhận giá trị nguyên

\(\Rightarrow\frac{2}{2x+1}\in z\)

\(\Rightarrow2⋮2x+1\Rightarrow2x+1\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 2x + 1 = 2 => 2x = 1 => x =1/2 ( loại)

      2x +1  = -1 => 2x = -2 => x = -1 (TM)

     2x +1   = -2 => 2x = -3 => x = -3/2 ( loại)

    2x +1  = 1 => 2x = 0 => x =0 (TM)

KL: x =...

d) ta có: \(\frac{5-x}{x-2}=\frac{-x+5}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=\frac{-\left(x-2\right)}{x-2}+\frac{3}{x-2}=\left(-1\right)+\frac{3}{x-2}\)

Để E(x) nhận giá trị nguyên

\(\Rightarrow\frac{3}{x-2}\inℤ\)

\(\Rightarrow3⋮x-2\Rightarrow x-2\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x -2 = 3 => x =5 (TM)

    x -2   = -3 => x = -1 (TM)

   x -2    = 1 => x =3 (TM)

   x -2   = -1 => x = 1 (TM)

KL: x= ....

18 tháng 6 2019

\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)

\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)

\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Xét các trường hợp rồi tìm được x thôi :>

\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)

\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)

d, TT

20 tháng 6 2019

YRTSCEYHTFGELCWAMTR.HUNYLA.INBYRUVIQYQNTUNHCUYTBSEUITBVYIQNVIALVTVANYUVLNAUTGUYVTUEVUEATWEHVUTSIOERHUYDBUHEYVGYEGYEHTHGERTGVRYT

20 tháng 9 2018

\(D=\frac{4x+1}{x+3}\inℤ\Leftrightarrow4x+1⋮x+3\)

\(\Rightarrow4x+12-11⋮x+3\)

\(\Rightarrow4\left(x+3\right)-11⋮x+3\)

\(\Rightarrow11⋮x+3\)

\(\Rightarrow x+3\in\left\{-1;1;-11;11\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-14;8\right\}\)

20 tháng 9 2018

a) \(D=\frac{4x+1}{x+3}\)
=> 4x + 1 \(⋮\)( x + 3 ) để D là số nguyên

Mà ( x + 3 ) \(⋮\)( x + 3 ) => 4( x + 3 ) \(⋮\)( x + 3 )
=> [ 4x + 1 - 4( x + 3 ) ] \(⋮\)( x + 3 )
=> [ 4x + 1 - 4x + 12 ]  \(⋮\)( x + 3 )
=> 13  \(⋮\)( x + 3 )
=> \(x+3\inƯ\left(13\right)\)\(=\left\{\pm1;\pm13\right\}\)

x + 3-11-1313
24-1016

Vậy \(x\in\left\{-10;2;4;16\right\}\)Để D là số nguyên
b) \(E=\frac{6x+2}{2x-3}\)
=> 6x + 2 \(⋮\)2x - 3 để E là số nguyên
Mà ( 2x - 3 )  \(⋮\)( 2x - 3 ) => 3( 2x - 3 )  \(⋮\)( 2x - 3 )

=> [ 6x + 2 - 3( 2x - 3 ) ]  \(⋮\)( 2x - 3 )
=> [ 6x + 2 - 6x - 3 ]  \(⋮\)( 2x - 3 )
=> -1  \(⋮\)( 2x - 3 )
=> ( 2x - 3 ) \(\inƯ\left(-1\right)=\left\{\pm1\right\}\)
 

2x - 3-11
2x24
x12

Vậy x \(\in\left\{1;2\right\}\)để E là số nguyên
Còn phần còn lại cậu có thể làm tương tự.

29 tháng 3 2017

a) m = 2x +5 / x +1 

= 2(x+1) + 3 / x+1

= 2 + 3/ x+ 1

Để M có giá trị nguyên thì 3 phải chia hết cho x + 1

=> x+1 = 3

=> x = 2

Vậy x = 2 thì M có giá trị nguyên

7 tháng 7 2016

Bài 1:

a)\(\left(2x+5\right)\left(6y-7\right)=13\)

=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}

  • Với 2x+5=13 =>x=4      =>6y-7=1 =>y=4/3 (loại)
  • Với 2x+5=-13 =>x=-9    =>6y-7=-1 =>y=1 (tm)
  • Với 2x+5=-1 =>x=-3      =>6y-7=-13 =>y=-1 (tm)
  • Với 2x+5=1  =>x=-2      =>6y-7=13=13 =>y=10/3 (loại)

Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)

2)xy+x+y=0

=>xy+x+y+1=1

=>(xy+x)+(y+1)=1

=>x(y+1)+(y+1)=1

=>(x+1)(y+1)=1

Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé

c)xy-x-y+1=0

=>(x-1)y-x+1=0

=>(x-1)y-x-0+1=0

=>(x-1)(y-1)=0

  • Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z) 
  • Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn

d và e bn phân tích ra tính tương tự

Bài 2:

a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)

=>4 chia hết x+1

=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp

b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)

=>2 chia hết x+3 

=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé

c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)

=>4 chia hết 2x+4

=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

15 tháng 12 2016

b)\(B=\frac{x^2-3x+7}{x-3}=\frac{x\left(x-3\right)+7}{x-3}=x+\frac{7}{x-3}\)

\(\Rightarrow B\in Z\Leftrightarrow x+\frac{7}{x-3}\in Z\Leftrightarrow x\in Z,\frac{7}{x-3}\in Z\Leftrightarrow7⋮x-3\Leftrightarrow x-3\inƯ\left\{7\right\}\)

\(\Rightarrow x-3\in\left\{-1;-7;1;7\right\}\)

\(\Rightarrow x\in\left\{2;-4;4;10\right\}\)

c)\(C=\frac{x^2+1}{x-1}=\frac{x^2-1+2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+2}{x-1}=\left(x+1\right)+\frac{2}{x-1}\)

\(\Rightarrow C\in Z\Leftrightarrow\left(x+1\right)+\frac{2}{x-1}\in Z\Leftrightarrow x-1\in Z;\frac{2}{x-1}\in Z\)

\(\Leftrightarrow x\in Z;2⋮x-1\Rightarrow x-1\inƯ\left(2\right)\)

\(\Rightarrow x-1\in\left\{-1;-2;1;2\right\}\)

\(\Rightarrow x\in\left\{0;-1;2;3\right\}\)