K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

khó vậy

Trò chơi quay bánh xe số trong chương trình truyền hình "Hãy chọn giá đúng" của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15,....., 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người...
Đọc tiếp

Trò chơi quay bánh xe số trong chương trình truyền hình "Hãy chọn giá đúng" của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15,....., 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau.

Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau:

+ Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được.

+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được.

+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100.

Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác.

An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này.

1
6 tháng 5 2019

Đáp án B

Bình có 2 khả năng thắng cuộc:

+) Thắng cuộc sau lần quay thứ nhất. Nếu Bình quay vào một trong 5 nấc: 80, 85, 90, 95, 100 thì sẽ thắng nên xác suất thắng cuộc của Bình trường hợp này là P 1   =   5 20   =   1 4  

+) Thắng cuộc sau 2 lần quay. Nếu Bình quay lần 1 vào một trong 15 nấc: 5, 10, ..., 75 thì sẽ phải quay thêm lần thứ 2. Ứng với mỗi nấc quay trong lần thứ nhất, Bình cũng có 5 nấc để thắng cuộc trong lần quay thứ 2, vì thế xác suất thắng cuộc của Bình trường hợp này là P 2   =   15   ×   5 20   ×   20   =   3 16  

Từ đó, xác suất thắng cuộc của Bình là

5 tháng 10 2018


3 tháng 12 2019

Chọn C

Có 2 bộ số {a;b;c} có tổng các chữ số bằng 5 là: {0;1;4}, {0;2;3}, mỗi bộ số có 3! hoán vị nên có tất cả 12 khả năng.

Do đó xác suất để người đó bấm máy một lần đúng số cần gọi là 1 12 .

NV
2 tháng 11 2021

Không gian mẫu: \(n\left(\Omega\right)=10!\)

Chọn 5 chữ số từ 6 chữ số còn lại (khác 0,3,6,8): có \(C_6^5\) cách

Hoán vị 6 chữ số (5 chữ số được chọn nói trên và số 8): \(6!\) cách

Tổng cộng: \(6!.C_6^5\) số

Xác suất: \(P=\dfrac{6!.C_6^5}{10!}=...\)

22 tháng 9 2018

Đáp án C.

17 tháng 5 2022

 Tham khảo:

Số phần tử của không gian mẫu là img1. Để người đó gọi đúng số điện thoại mà không phải thử quá hai lần ta có 2 trường hợp:

TH1: Người đó gọi đúng ở lần thứ nhất.

TH2: Người đó gọi đúng ở lần thứ hai. Gọi A1 người đó gọi đúng ở lần thứ nhất

img5 Xác suất người đó gọi đúng là P(A1) = \(\dfrac{1}{10}\) 

      Xác suất người đó gọi không đúng là P(A1) = \(\dfrac{9}{10}\).

Gọi A2 là người đó gọi đúng ở lần thứ hai

img10 Xác suất người đó gọi đúng là P(A2) = \(\dfrac{1}{9}\) .

Gọi A là người đó gọi đúng số điện thoại mà không phải thử quá hai lần, ta có img14img15(đpcm)

17 tháng 5 2022

3 lần chứ có phải 2 lần đâu ; copy thì cx phải đọc kĩ chứ 

9 tháng 11 2019

10 tháng 8 2018

Chọn D 

Gọi 2 số cuối là ab,là số điện thoại nên có đủ các chữ số từ 0 đến 9

Ta có a có 10 cách chọn, b khác a nên có 9 cách chọn. Vậy không gian mẫu có 9.10= 90 phần tử.

Vậy xá xuất gọi một lần dúng là 1/90