Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔRST vuông tại R có RH là đường cao ứng với cạnh huyền TS, ta được:
\(RH^2=SH\cdot HT\)
\(\Leftrightarrow RH^2=3.6\cdot6.4=23.04\)
hay RH=4,8(cm)
Vậy: RH=4,8cm
b) \(S_{RHT}=\dfrac{RH\cdot TH}{2}=\dfrac{4.8\cdot6.4}{2}=15.36\left(cm^2\right)\)
c) Xét tứ giác RDHE có
\(\widehat{ERD}=90^0\)
\(\widehat{REH}=90^0\)
\(\widehat{RDH}=90^0\)
Do đó: RDHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
câu f đâu ạ